凯时66

欢迎访问 草业科学,今天是

新疆温性草原土壤pH特征及影响因素

左李娜 陈静 张慧 刘耘华 盛建东 张凯 程军回

引用本文: 左李娜,陈静,张慧,刘耘华,盛建东,张凯,程军回. 新疆温性草原土壤pH特征及影响因素. 草业科学, 2022, 39(0): 1-13 doi: shu
Citation:  ZUO L N, CHEN J, ZHANG H, LIU Y H, SHENG J D, ZHANG K, CHENG J H. Patterns and drivers of soil pH on the Xinjiang temperate steppe. Pratacultural Science, 2022, 39(0): 1-13 doi: shu

新疆温性草原土壤pH特征及影响因素

    作者简介: 左李娜(1994-),女,山西临汾人,在读硕士生,主要研究方向为土壤学。E-mail: 1017572048@qq.com
    通讯作者: 程军回(1984-),男,甘肃庄浪人,博士,副教授,主要研究方向为植物生态学。E-mail: cjhgraymice@126.com
  • 基金项目: 国家自然科学基金项目-新疆联合基金重点项目(U1603235);国家自然科学基金-地区基金(31660127)

摘要: 土壤pH是影响草地生态系统植物生长和土壤养分有效性的主要因素之一,现有研究发现其受到海拔、气候和土壤理化性质的影响。之前研究多集中在这些因子对表层土壤pH变化的影响,而不同土层pH对这些因子的响应是否一致仍缺乏探讨。基于此,本研究以新疆温性草原为研究对象,于2011-2013年对86个样地的不同土层(0-5、5-10、10-20、20-30、30-50、50-70和70-100 cm)土壤pH和相关理化性质(土壤有机质、土壤全氮含量、容重和土石比)进行测定,并重点分析了地表微环境(凋落物、立枯、覆沙、砾石、风蚀和水蚀程度)对不同土层pH的影响,以及海拔、气候(年平均温度和年平均降水量)和相关理化性质与土壤pH之间的关系。研究发现:1)随土层增加,土壤pH呈逐渐增大的变化特征,而土壤有机质和全氮含量则呈降低的趋势。2)凋落物、砾石和风蚀对各土层pH均无显著影响(P > 0.05),立枯显著降低了0-50 cm各土层中pH (P < 0.05),水蚀仅增加了0-20 cm各土层pH,覆沙则降低了70-100 cm土层中pH。3)各土层pH与海拔以及0-10 cm土层pH与年平均温度之间呈显著正相关关系(P < 0.05),年平均降水量与0-30 cm土层pH呈现显著负相关关系(P < 0.05)。各土层pH与土壤有机质和全氮含量之间多表现为显著负相关关系(P < 0.05),而与容重和土石比仅在个别土层有内在联系。主成分分析进一步表明,土壤有机质、全氮含量、土石比和年平均温度对pH的影响强度高于其他因素。结果表明,新疆温性草原土壤pH的变化均受到地表微环境、海拔、气候和土壤理化性质的影响,但影响强度在不同因子和不同土层间存在差异。

English

    1. [1]

      PALPURINA S, WAGNER V, VON WEHRDEN H, HÁJEK M, HORSÁK M, BRINKERT A, HÖLZEL N, WESCHE K, KAMP J, HÁJKOVÁ P.  The relationship between plant species richness and soil pH vanishes with increasing aridity across Eurasian dry grasslands[J]. Global Ecology and Biogeography, 2017, 26(4): 425-434. doi:

    2. [2]

      SCHUSTER B, DIEKMANN M.  Changes in species density along the soil pH gradient—evidence from German plant communities[J]. Folia Geobotanica, 2003, 38(4): 367-379. doi:

    3. [3]

      YANG Y, FANG J, JI C, MA W, MOHAMMAT A, WANG S, WANG S, DATTA A, ROBINSON D, SMITH P.  Widespread decreases in topsoil inorganic carbon stocks across China’s grasslands during 1980s–2000s[J]. Global Change Biology, 2012, 18(12): 3672-3680. doi:

    4. [4]

      BAAR J, ROELOFS J G. Distribution of plant species in relation to pH of soil and water. Handbook of Plant Growth pH as the Master Variable. Advances in Experimental Medicine and Biology. 2002, 88 (1): 391-410 . .

    5. [5]

      JIAO F, SHI X R, HAN F P, YUAN Z Y.  Increasing aridity, temperature and soil pH induce soil CNP imbalance in grasslands[J]. Scientific Reports, 2016, 6(1): 1-9. doi:

    6. [6]

      魏强, 凌雷, 王多锋, 柴春山, 王芳, 钟怡铭, 陶继新, 张广忠, 李国林.  不同海拔甘肃兴隆山主要森林群落的土壤理化性质[J]. 西北林学院学报, 2019, 34(4): 26-35. doi:
      WEI Q, LING L, WANG D F, CHAI C S, WANG F, ZHONG Y M, TAO J X, ZHANG G Z, LI G L.  Soil physicochemical properties of three main forest communities at different altitudes in Xinglong Mountain of Gansu Province[J]. Journal of Northwest Forestry University, 2019, 34(4): 26-35. doi:

    7. [7]

      周煜杰, 贾夏, 赵永华, 陈南南, 闫瑾, 汤剑秋, 王茜, 刘黎.  秦岭火地塘真菌群落海拔分布格局[J]. 应用生态学报, 2021, 32(7): 2589-2596.
      ZHOU Y J, JIA X, ZHAO Y H, CHEN N N, YAN J, TANG J Q, WANG Q, LIU L.  Altitude distribution of fungal community in Huoditang in Qinling Mountains, Northwest China[J]. Chinese Journal of Applied Ecology, 2021, 32(7): 2589-2596.

    8. [8]

      YANG Y, JI C, MA W, WANG S, WANG S, HAN W, MOHAMMAT A, ROBINSON D, SMITH P.  Significant soil acidification across northern China’s grasslands during 1980s–2000s[J]. Global Change Biology, 2012, 18(7): 2292-2300. doi:

    9. [9]

      王琇瑜, 黄晓霞, 和克俭, 孙晓能, 吕曾哲舟, 张勇, 朱湄, 曾睿钦.  滇西北高寒草甸植物群落功能性状与土壤理化性质的关系[J]. 草业学报, 2020, 29(8): 6-17. doi:
      WANG X Y, HUANG X X, HE K J, SUN X N, LYUZENG Z Z, ZHANG Y, ZHU M, ZENG R Q.  The relationship between plant functional traits and soil physicochemical properties in alpine meadows in Northwestern Yunnan Province, China[J]. Acta Prataculturae Sinica, 2020, 29(8): 6-17. doi:

    10. [10]

      RITCHIE G S P, DOLLING P J.  The role of organic matter in soil acidification[J]. Soil Research, 1985, 23(4): 569-576. doi:

    11. [11]

      戴万宏, 黄耀, 武丽, 俞佳.  中国地带性土壤有机质含量与酸碱度的关系[J]. 土壤学报, 2009, 46(5): 851-860. doi:
      DAI W H, HUANG Y, WU L, YU J.  Relationships between soil organic matter content (SOM) and pH in topsoil of zonal soils in China[J]. Acta Pedologica Sinica, 2009, 46(5): 851-860. doi:

    12. [12]

      申紫雁, 刘昌义, 胡夏嵩, 周林虎, 许桐, 李希来, 李国荣.  黄河源区高寒草地不同深度土壤理化性质与抗剪强度关系研究[J]. 干旱区研究, 2021, 38(2): 392-401.
      SHEN Z Y, LIU C Y, HU X S, ZHOU L H, XU T, LI X L, LI G R.  Relationships between the physical and chemical properties of soil and the shear strength of root-soil composite systems at different soil depths in alpine grassland in the source region of the Yellow River[J]. Arid Zone Research, 2021, 38(2): 392-401.

    13. [13]

      刘慧霞, 孙宗玖, 崔雨萱, 董乙强.  新疆北疆荒漠草地土壤容重空间分布格局及其影响因素[J]. 中国草地学报, 2021, 43(2): 82-91.
      LIU H X, SUN Z J, CUI Y X, DONG Y Q.  Spatial distribution pattern and impact factors of soil bulk density in desert grassland of Northern Xinjiang[J]. Chinese Journal of Grassland, 2021, 43(2): 82-91.

    14. [14]

      许鹏. 新疆草地资源及其利用. 乌鲁木齐: 新疆科技卫生出版社, 1993.
      XU P. Grassland Resources and Utilization in Xinjiang. Urumqi: Xinjiang Science and Technology Health Press, 1993.

    15. [15]

      新疆维吾尔自治区农业厅. 新疆土壤. 北京: 科学出版社, 1996.
      Agricultural Bureau of Uygur Autonomous Region of Xinjiang. Soil in Xinjiang. Beijing: Science Press, 1996.

    16. [16]

      鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2000.
      BAO S D. Soil and Agricultural Chemistry Analysis (Third Edition). Beijing: China Agricultural Press, 2000.

    17. [17]

      柴强. 新疆草地土壤主要性质及影响因素的分析. 乌鲁木齐: 新疆农业大学硕士学位论文, 2015.
      CHAI Q. The analysis about soil main properties and its influence factors of grassland in Xinjiang. Master Thesis. Urumqi: Xinjiang Agricultural University, 2015.

    18. [18]

      HIJMANS R J, CAMERON S E, PARRA J L, JONES P G, JARVIS A.  Very high resolution interpolated climate surfaces for global land areas[J]. International Journal of Climatology, 2005, 25(15): 1965-1978. doi:

    19. [19]

      李亚举, 张明军, 王圣杰, 李忠勤, 李小飞.  基于温度作为辅助变量的中国降水δ18O空间分布特征[J]. 地理科学进展, 2011, 30(11): 1387-1394. doi:
      LI Y J, ZHANG M J, WANG S J, LI Z Q, LI X F.  Precipitation in China based on temperature as an auxiliary variable δ18O spatial distribution characteristics[J]. Progress in Geography, 2011, 30(11): 1387-1394. doi:

    20. [20]

      史超逸, 朱媛君, 萨拉, 王丹雨, 杨晓晖.  中国三种常见蒿属植物潜在地理分布及其主导气候因子[J]. 生态学杂志, 2021, 40(2): 512-524.
      SHI C Y, ZHU Y J, SA L, WANG D Y, YANG X H.  Potential geographical distribution and the dominant climatic factors of three common Artemisia species in China[J]. Chinese Journal of Ecology, 2021, 40(2): 512-524.

    21. [21]

      SWENSON N G, ENQUIST B J.  Ecological and evolutionary determinants of a key plant functional trait: Wood density and its community‐wide variation across latitude and elevation[J]. American Journal of Botany, 2007, 94(3): 451-459. doi:

    22. [22]

      白志强, 张世熔, 钟钦梅, 王贵胤, 徐光荣, 马小杰.  四川盆地西缘土壤阳离子交换量的特征及影响因素[J]. 土壤, 2020, 52(3): 581-587.
      BAI Z Q, ZHANG S R, ZHONG Q M, WANG G Y, XU G R, MA X J.  Characteristics and impact factors of soil cation exchange capacity (CEC) in western margin of Sichuan Basin[J]. Soils, 2020, 52(3): 581-587.

    23. [23]

      R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing, 2012

    24. [24]

      高露, 张圣微, 赵鸿彬, 高文龙, 杜银龙, 林汐.  退化草原土壤理化性质空间异质性及其对土壤水分的影响[J]. 干旱区研究, 2020, 37(3): 607-617.
      GAO L, ZHANG S W, ZHAO H B, GAO W L, DU Y L, LIN X.  Spatial heterogeneity of soil physical and chemical properties in degraded grassland and their effect on soil moisture[J]. Arid Zone Research, 2020, 37(3): 607-617.

    25. [25]

      李浙华, 李生宇, 李丙文, 范敬龙, 蒋进, 李亚萍, 宋春武.  不同植被覆盖度沙垄土壤化学性质的空间分异[J]. 干旱区研究, 2020, 37(1): 160-167.
      LI Z H, LI S Y, LI B W, FAN J L, JIANG J, LI Y P, SONG C W.  Spatial variation of soil chemical properties of longitudinal dunes with different vegetation coverage levels[J]. Arid Zone Research, 2020, 37(1): 160-167.

    26. [26]

      张玲玉, 赵学强, 沈仁芳.  土壤酸化及其生态效应[J]. 生态学杂志, 2019, 38(6): 1900-1908.
      ZHANG L Y, ZHAO X Q, SHEN R F.  Soil acidification and its ecological effects[J]. Chinese Journal of Ecology, 2019, 38(6): 1900-1908.

    27. [27]

      杨鹏. 祁连山东段高寒草地土壤理化性质空间变化研究. 兰州: 甘肃农业大学硕士学位论文, 2018.
      YANG P. The study of spatial variety on soil physicochemical properties of in alpine grassland areas of eastern Qilian Mountains. Master Thesis. Lanzhou: Gansu Agricultural University, 2018.

    28. [28]

      张瑶瑶, 冷若琳, 崔霞, 宋清洁, 胥刚.  甘南州高寒草地土壤氮磷空间分布特征[J]. 草业学报, 2018, 27(12): 12-21. doi:
      ZHANG Y Y, LENG R L, CUI X, SONG Q J, XU G.  Spatial distribution characteristics of nitrogen and phosphorus in soil on the Gannan Plateau[J]. Acta Prataculturae Sinica, 2018, 27(12): 12-21. doi:

    29. [29]

      万丹, 梁博, 聂晓刚, 喻武, 张博.  西藏色季拉山土壤物理性质垂直地带性[J]. 生态学报, 2018, 38(3): 1065-1074.
      WAN D, LIANG B, NIE X G, YU W, ZHANG B.  Research on vertical zonation of soil physical properties in Sygera Mountain, Tibet[J]. Acta Ecologica Sinica, 2018, 38(3): 1065-1074.

    30. [30]

      黄瑞农. 环境土壤学. 北京: 高等教育出版社, 1994.
      HUANG R N. Environmental Soil Science. Beijing: Higher Education Press, 1994.

    31. [31]

      BARAK P, JOBE B O, KRUEGER A R, PETERSON L A, LAIRD D A.  Effects of long-term soil acidification due to nitrogen fertilizer inputs in Wisconsin[J]. Plant and Soil, 1997, 197(1): 61-69. doi:

    32. [32]

      BARTLETT R, MCINTOSH J.  pH‐dependent bonding of potassium by a Spodosol[J]. Soil Science Society of America Journal, 1969, 33(4): 535-539. doi:

    33. [33]

      董尔其丽. 盐渍化草甸土覆沙措施控盐效果试验研究. 呼和浩特: 内蒙古农业大学硕士学位论文, 2020.
      DONG E Q L. Experimental study on the effect of salt control on saline meadow soil covering measures. Master Thesis. Huhhot: Inner Mongolia Agricultural University, 2020.

    34. [34]

      王启龙, 曹源, 王波.  覆沙压盐对土壤理化性质及黑麦草生长的影响[J]. 西部大开发(土地开发工程研究), 2018, 3(12): 53-57.
      WANG Q L, CAO Y, WANG B.  Effects of sand covering on physicochemical properties of saline alkali soil and ryegrass growth[J]. Land Development and Engineering Research, 2018, 3(12): 53-57.

    35. [35]

      张丽萍, 王小云, 张赫斯.  沙盖黄土丘陵坡地土壤理化特性随地形变化规律研究[J]. 地理科学, 2011, 31(2): 178-183.
      ZHANG L P, WANG X Y, ZHANG H S.  Evolution of physical and chemical characteristics of loess with different landforms in slope field under sand cover[J]. Scientia Geographica Sinica, 2011, 31(2): 178-183.

    36. [36]

      符素华.  土壤中砾石存在对入渗影响研究进展[J]. 水土保持学报, 2005, 19(1): 171-175. doi:
      FU S H.  Effect of soil containing rock fragment on infiltration[J]. Journal of Soil and Water Conservation, 2005, 19(1): 171-175. doi:

    37. [37]

      王小平, 杨雪, 杨楠, 辛晓静, 曲耀冰, 赵念席, 高玉葆.  凋落物多样性及组成对凋落物分解和土壤微生物群落的影响[J]. 生态学报, 2019, 39(17): 6264-6272.
      WANG X P, YANG X, YANG N, XIN X J, QU Y B, ZHAO N X, GAO Y B.  Effects of litter diversity and composition on litter decomposition characteristics and soil microbial community[J]. Acta Ecologica Sinica, 2019, 39(17): 6264-6272.

    38. [38]

      黄昌勇. 土壤学(第三版). 北京: 中国农业出版社, 2010.
      HUANG C Y. Soil Science (Third Edition). Beijing: China Agricultural Press, 2010.

    39. [39]

      车明轩, 吴强, 方浩, 康成芳, 吕宸, 许蔓菁, 宫渊波.  海拔、坡向对川西高山灌丛草甸土壤氮、磷分布的影响[J]. 应用与环境生物学报, 2021, 27(5): 1163-1169.
      CHE M X, WU Q, FANG H, KANG C F, LYU C, XU M J, GONG Y B.  Effects of elevation and slope aspect on soil nitrogen and phosphorus distribution of western Sichuan Plateau shrub meadow[J]. Chinese Journal of Applied and Environmental Biology, 2021, 27(5): 1163-1169.

    40. [40]

      何晓玲, 尹林克, 严成, 李和平.  天山中部北麓丘陵地带土壤发生特性与系统分类[J]. 土壤通报, 2006, 37(5): 833-836. doi:
      HE X L, YI L K, YAN C, LI H P.  Genetic characteristics and taxonomy of highland soil in the north front of the central Tian Shan Mountains[J]. Chinese Journal of Soil Science, 2006, 37(5): 833-836. doi:

    41. [41]

      赵欢. 中国北方草原物候的时空动态变化及其对气候的响应. 成都: 成都理工大学硕士学位论文, 2018.
      ZHAO H. Spatiotemporal dynamics of vegetation phenology and its response to climate change in Northern China’s grasslands. Master Thesis. Chengdu: Chengdu University of Technology, 2018.

    42. [42]

      于天仁.  中国土壤的酸度特点和酸化问题[J]. 土壤通报, 1988, 19(2): 49-51.
      YU T R.  Characteristics and problems of soil acidity in China[J]. Chinese Journal of Soil Science, 1988, 19(2): 49-51.

    43. [43]

      余倩, 段雷, 郝吉明.  中国酸沉降: 来源、影响与控制[J]. 环境科学学报, 2021, 41(3): 731-746.
      YU Q, DUAN L, HAO J M.  Acid deposition in China: Sources, effects and control[J]. Acta Scientiae Circumstantiae, 2021, 41(3): 731-746.

    44. [44]

      代静玉, 周江敏, 秦淑平.  几种有机物料分解过程中溶解性有机物质化学成分的变化[J]. 土壤通报, 2004, 35(6): 724-727. doi:
      DAI J Y, ZHOU J M, QIN S P.  Dynamic changes of chemical composition of dissolved organic matter during decomposition of organic materials[J]. Chinese Journal of Soil Science, 2004, 35(6): 724-727. doi:

    45. [45]

      MALHI S S, HARAPIAK J T, GILL K S, FLORE N.  Long-term N rates and subsequent lime application effects on macroelements concentration in soil and in bromegrass hay[J]. Journal of Sustainable Agriculture, 2002, 21(1): 79-97. doi:

    46. [46]

      汪吉东, 许仙菊, 宁运旺, 张辉, 马洪波, 张永春.  土壤加速酸化的主要农业驱动因素研究进展[J]. 土壤, 2015, 47(4): 627-633.
      WANG J D, XU X J, NING Y W, ZHANG H, MA H B, ZHANG Y C.  Progresses in agricultural driving factors on accelerated acidification of soils[J]. Soils, 2015, 47(4): 627-633.

    47. [47]

      BAI Y, WU J, CLARK C M, NAEEM S, PAN Q, HUANG J, ZHANG L, HAN X.  Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: Evidence from Inner Mongolia grasslands[J]. Global Change Biology, 2010, 16(1): 358-372. doi:

    48. [48]

      段雷, 黄永梅, 郝吉明, 周中平.  中国植被对氮和盐基阳离子吸收速率及其在土壤酸化中的作用[J]. 环境科学, 2002, 23(3): 68-74. doi:
      DUAN L, HUANG Y M, HAO J M, ZHOU Z P.  Vegetation uptake of nitrogen and base cation in China and its role in soil acidification[J]. Chinese Journal of Environmental Science, 2002, 23(3): 68-74. doi:

    49. [49]

      郭群.  氮添加对内蒙古温带典型草原土壤的酸化效应及水分的影响[J]. 应用生态学报, 2019, 30(10): 3285-3291.
      GUO Q.  Soil acidification induced by nitrogen addition and its responses to water addition in Inner Mongolia temperate steppe, China[J]. Chinese Journal of Applied Ecology, 2019, 30(10): 3285-3291.

    50. [50]

      CALHOUN F, SMECK N, SLATER B, BIGHAM J, HALL G.  Predicting bulk density of Ohio soils from morphology, genetic principles, and laboratory characterization data[J]. Soil Science Society of America Journal, 2001, 65(3): 811-819. doi:

    51. [51]

      CERDÀ A.  Effects of rock fragment cover on soil infiltration, interrill runoff and erosion[J]. European Journal of Soil Science, 2001, 52(1): 59-68. doi:

    52. [52]

      房凯, 郑加兴, 张俐, 李紫纯, 赵瑜.  砾石覆盖对土壤入渗特性影响的试验研究[J]. 中国农村水利水电, 2020, 25(2): 100-104. doi:
      FANG K, ZHENG J X, ZHANG L, LI Z C, ZHAO Y.  The influence of rock fragment cover on soil infiltration properties[J]. China Rural Water and Hydropower, 2020, 25(2): 100-104. doi:

    1. [1]

      高兴祥孙作文李美朱虹赵米若李健房锋 . 入侵植物银胶菊对山东不同性状土壤的适应性. 草业科学, doi: 

    2. [2]

      马国飞满苏尔·沙比提张雪琪 . 托木尔峰南坡不同植被类型土壤特性及其与海拔的关系. 草业科学, doi: 

    3. [3]

      刘倩郑翔邓邦良郑利亚黄立君王书丽张令郭晓敏 . 武功山草甸不同海拔对土壤和植物凋落物磷含量的影响. 草业科学, doi: 

    4. [4]

      朱文慧张鲜花朱进忠 . 海拔梯度对新疆梯牧草植株形态学特征的影响. 草业科学, doi: 

    5. [5]

      谢晓玲周蓉谢焕松沈振西邓自发 . 藏北高原不同海拔四川嵩草克隆种群表型和繁殖对策. 草业科学, doi: 

    6. [6]

      刘婷娜王彦荣胡小文 . 不同海拔垂穗披碱草种子产量及其构成因素. 草业科学, doi: 

    7. [7]

      何盘星张鲜花朱进忠 . 海拔梯度对塔尔巴哈台山地鸭茅群落物种组成及多样性影响. 草业科学, doi: 

    8. [8]

      董莉莉安沙舟靳瑰丽荀其蕾魏鹏屈慧敏 . 不同生境下醉马草幼苗数量的变化规律. 草业科学, doi: 

    9. [9]

      邓邦良袁知洋郭晓敏 . 武功山草甸土壤微量元素分布及对人为干扰的响应. 草业科学, doi: 

    10. [10]

      杜美琪张恒硕彭栋查同刚 . 冀西北中低山区灌草群落生物量分配及其与土壤因子的关系. 草业科学, doi: 

    11. [11]

      董万清闫智臣邓杰李应德丁婷婷段廷玉 . 甘肃省兴隆山区域丛枝菌根真菌多样性初探. 草业科学, doi: 

    12. [12]

      任敏谭振宇张智袁高永强赵祥任国华苏宗义 . 山西4类主要天然草地的生物量空间分布特征. 草业科学, doi: 

    13. [13]

      廖莹范继辉李怡颖程根伟 . 1978−2017年西藏高原冻融指数时空变化特征. 草业科学, doi: 

    14. [14]

       不同海拔关山草原群落的结构特征. 草业科学, 

    15. [15]

      王岳王海燕李旭杨晓娟刘玲李卫松 . 不同密度下近天然落叶松云冷杉林各土层土壤理化特征. 草业科学, doi: 

    16. [16]

      宋雄儒尚振艳李旭东傅 华 . 贺兰山西坡不同海拔梯度草地土壤磷特征及其影响因素. 草业科学, doi: 

    17. [17]

      邓杰李芳古丽君段廷玉 . 不同土壤pH下AM真菌对苜蓿苗期生长的影响. 草业科学, doi: 

    18. [18]

      黄文达赵学勇李玉霖罗亚勇王少昆潘成臣 . 不同海拔梯度下小叶锦鸡儿的居群遗传多样性. 草业科学, doi: 

    19. [19]

      韩润燕陈彦云李旺霞 . 不同微地形固定沙丘地上植被、土壤种子库和土壤含水量的分布特征. 草业科学, doi: 

    20. [20]

      褚希彤付娟娟孙永芳益西措姆苗彦军许岳飞呼天明 . 不同海拔梯度嵩草种子的萌发机制. 草业科学,

  • 凯时66

    图 1  研究区域和样地分布图

    Figure 1.  Study area and distribution of study sites

    图 2  地表微环境对新疆温性草原土壤pH变化的影响

    Figure 2.  Effects of the surface microenvironment on soil pH on the Xinjiang temperate steppe

    NS:无显著影响;不同小写字母表示处理间差异显著(P < 0.05)。

    NS: No significant difference; different lowercase letters indicate significant differences between different treatments at the 0.05 significance level.

    图 3  新疆温性草原不同土层pH与海拔、年平均温度和年平均降水量之间的关系

    Figure 3.  Relationships of different soil layer pH levels with elevation, mean annual temperature and mean annual precipitation on the Xinjiang temperate steppe

    图中实线和虚线分别代表在显著性0.05水平下的拟合关系及95%置信区间;NS:无显著相关;图4同。

    The solid and dotted lines in the figures represent the fitted relationships and their confidence intervals at the significance level of 0.05, respectively; NS: No significant difference; this is applicable for Figure 4 as well.

    图 4  新疆温性草原不同土层pH与土壤有机质、全氮含量、容重和土石比之间的关系

    Figure 4.  Relationships of different soil layer pH levels with soil organic matter, total nitrogen content, soil bulk density, and volume ratio of rock to soil on the Xinjiang temperate steppe

    图 5  基于主成分分析的海拔(Ele)、年平均温度(MAT)、年平均降水量(MAP)、土层(Layer)、土壤有机质(SOM)、土壤全氮(STN)含量、土壤容重(SBD)和土石比(RRS)对新疆温性草原土壤pH的影响

    Figure 5.  Effects of elevation (Ele), mean annual temperature (MAT), mean annual precipitation (MAP), soil layers (Layer), soil organic matter (SOM), soil total nitrogen (STN) content, soil bulk density (SBD), and ratio of rock to soil (RRS) on soil pH on the Xinjiang temperate steppe on basis of a principal component analysis

    PC1、PC2、PC3和PC4分别为第一、第二、第三和第四主成分的缩写。

    PC1, PC2, PC3, and PC4 are abbreviations of the first, second, third, and fourth principal components, respectively.

    表 1  新疆温性草原土壤理化性质特征

    Table 1.  Descriptive statistics of the soil physicochemical properties on the Xinjiang temperate steppe

    指标
    Index
    土层深度
    Soil layers/cm
    平均值 ± 标准误
    Mean ± Standard error
    最小值
    Minimum
    最大值
    Maximum
    变异系数
    Coefficient of variation/%
    土壤pH
    Soil pH
    0-57.84 ± 0.07f6.109.068.50
    5-107.95 ± 0.07ef6.129.128.10
    10-208.10 ± 0.07de6.249.257.50
    20-308.26 ± 0.07cd6.709.327.00
    30-508.30 ± 0.06bc6.379.387.10
    50-708.53 ± 0.06ab7.159.365.20
    70-1008.71 ± 0.06a8.009.394.40
    土壤有机质
    Soil organic matter/(g·kg−1)
    0-560.90 ± 4.29a9.05194.3652.24
    5-1048.72 ± 3.08b9.66142.8946.83
    10-2040.49 ± 2.50c9.52110.6945.37
    20-3033.13 ± 2.07cd9.9388.5145.86
    30-5027.83 ± 1.79de9.7171.2845.85
    50-7021.10 ± 1.53ef6.9445.4942.16
    70-10017.26 ± 1.88f1.9941.5656.54
    土壤全氮
    Soil total nitrogen/(g·kg−1)
    0-53.25 ± 0.21a0.3212.5459.89
    5-102.74 ± 0.13b0.209.4054.08
    10-202.29 ± 0.11c0.307.5050.45
    20-301.89 ± 0.10d0.186.2054.05
    30-501.43 ± 0.10e0.135.0757.62
    50-701.04 ± 0.16ef0.163.3069.15
    70-1000.83 ± 0.09f0.112.8073.43
    土壤容重
    Soil bulk density/(g·cm−3)
    0-51.21 ± 0.03a0.642.0020.53
    5-101.26 ± 0.04a0.662.6427.90
    10-201.26 ± 0.03a0.592.5425.13
    20-301.22 ± 0.03a0.702.5823.73
    30-501.21 ± 0.03a0.772.1721.69
    50-701.20 ± 0.02a0.711.7514.75
    70-1001.24 ± 0.04a0.782.3419.50
    土石比
    Ratio of rock to soil
    0-50.24 ± 0.59a0.010.6469.60
    5-100.26 ± 0.61a0.040.8670.87
    10-200.31 ± 0.69a0.030.8065.37
    20-300.31 ± 0.69a0.000.7165.16
    30-500.34 ± 0.78a0.030.7356.51
    50-700.29 ± 0.60a0.030.8679.89
    70-1000.26 ± 0.58a0.030.7774.07
     同列不同小写字母表示土壤理化性质在不同土层间差异显著(P < 0.05)。
     Different lowercase letters within the same column indicate significant differences between different soil layers of the soil physicochemical properties at the 0.05 level.
    下载: 导出CSV
    凯时66
  • 加载中
图(5)表(1)
计量
  • PDF下载量:  5
  • 文章访问数:  28
  • HTML全文浏览量:  27
文章相关
  • 通讯作者:  程军回, cjhgraymice@126.com
  • 接受日期:  2022-02-22
  • 网络出版日期:  2022-05-05
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
凯时66