指标 Index | 土层深度 Soil layers/cm | 平均值 ± 标准误 Mean ± Standard error | 最小值 Minimum | 最大值 Maximum | 变异系数 Coefficient of variation/% |
土壤pH Soil pH | 0-5 | 7.84 ± 0.07f | 6.10 | 9.06 | 8.50 |
5-10 | 7.95 ± 0.07ef | 6.12 | 9.12 | 8.10 | |
10-20 | 8.10 ± 0.07de | 6.24 | 9.25 | 7.50 | |
20-30 | 8.26 ± 0.07cd | 6.70 | 9.32 | 7.00 | |
30-50 | 8.30 ± 0.06bc | 6.37 | 9.38 | 7.10 | |
50-70 | 8.53 ± 0.06ab | 7.15 | 9.36 | 5.20 | |
70-100 | 8.71 ± 0.06a | 8.00 | 9.39 | 4.40 | |
土壤有机质 Soil organic matter/(g·kg−1) | 0-5 | 60.90 ± 4.29a | 9.05 | 194.36 | 52.24 |
5-10 | 48.72 ± 3.08b | 9.66 | 142.89 | 46.83 | |
10-20 | 40.49 ± 2.50c | 9.52 | 110.69 | 45.37 | |
20-30 | 33.13 ± 2.07cd | 9.93 | 88.51 | 45.86 | |
30-50 | 27.83 ± 1.79de | 9.71 | 71.28 | 45.85 | |
50-70 | 21.10 ± 1.53ef | 6.94 | 45.49 | 42.16 | |
70-100 | 17.26 ± 1.88f | 1.99 | 41.56 | 56.54 | |
土壤全氮 Soil total nitrogen/(g·kg−1) | 0-5 | 3.25 ± 0.21a | 0.32 | 12.54 | 59.89 |
5-10 | 2.74 ± 0.13b | 0.20 | 9.40 | 54.08 | |
10-20 | 2.29 ± 0.11c | 0.30 | 7.50 | 50.45 | |
20-30 | 1.89 ± 0.10d | 0.18 | 6.20 | 54.05 | |
30-50 | 1.43 ± 0.10e | 0.13 | 5.07 | 57.62 | |
50-70 | 1.04 ± 0.16ef | 0.16 | 3.30 | 69.15 | |
70-100 | 0.83 ± 0.09f | 0.11 | 2.80 | 73.43 | |
土壤容重 Soil bulk density/(g·cm−3) | 0-5 | 1.21 ± 0.03a | 0.64 | 2.00 | 20.53 |
5-10 | 1.26 ± 0.04a | 0.66 | 2.64 | 27.90 | |
10-20 | 1.26 ± 0.03a | 0.59 | 2.54 | 25.13 | |
20-30 | 1.22 ± 0.03a | 0.70 | 2.58 | 23.73 | |
30-50 | 1.21 ± 0.03a | 0.77 | 2.17 | 21.69 | |
50-70 | 1.20 ± 0.02a | 0.71 | 1.75 | 14.75 | |
70-100 | 1.24 ± 0.04a | 0.78 | 2.34 | 19.50 | |
土石比 Ratio of rock to soil | 0-5 | 0.24 ± 0.59a | 0.01 | 0.64 | 69.60 |
5-10 | 0.26 ± 0.61a | 0.04 | 0.86 | 70.87 | |
10-20 | 0.31 ± 0.69a | 0.03 | 0.80 | 65.37 | |
20-30 | 0.31 ± 0.69a | 0.00 | 0.71 | 65.16 | |
30-50 | 0.34 ± 0.78a | 0.03 | 0.73 | 56.51 | |
50-70 | 0.29 ± 0.60a | 0.03 | 0.86 | 79.89 | |
70-100 | 0.26 ± 0.58a | 0.03 | 0.77 | 74.07 | |
同列不同小写字母表示土壤理化性质在不同土层间差异显著(P < 0.05)。 Different lowercase letters within the same column indicate significant differences between different soil layers of the soil physicochemical properties at the 0.05 level. |

Citation: ZUO L N, CHEN J, ZHANG H, LIU Y H, SHENG J D, ZHANG K, CHENG J H. Patterns and drivers of soil pH on the Xinjiang temperate steppe. Pratacultural Science, 2022, 39(0): 1-13 doi:

新疆温性草原土壤pH特征及影响因素
English
Patterns and drivers of soil pH on the Xinjiang temperate steppe
-
-
-
[1]
PALPURINA S, WAGNER V, VON WEHRDEN H, HÁJEK M, HORSÁK M, BRINKERT A, HÖLZEL N, WESCHE K, KAMP J, HÁJKOVÁ P. The relationship between plant species richness and soil pH vanishes with increasing aridity across Eurasian dry grasslands[J]. Global Ecology and BiogeographyGlobal Ecology and Biogeography, 2017, 26(4): 425-434. doi:
-
[2]
SCHUSTER B, DIEKMANN M. Changes in species density along the soil pH gradient—evidence from German plant communities[J]. Folia GeobotanicaFolia Geobotanica, 2003, 38(4): 367-379. doi:
-
[3]
YANG Y, FANG J, JI C, MA W, MOHAMMAT A, WANG S, WANG S, DATTA A, ROBINSON D, SMITH P. Widespread decreases in topsoil inorganic carbon stocks across China’s grasslands during 1980s–2000s[J]. Global Change BiologyGlobal Change Biology, 2012, 18(12): 3672-3680. doi:
-
[4]
BAAR J, ROELOFS J G. Distribution of plant species in relation to pH of soil and water. Handbook of Plant Growth pH as the Master Variable. Advances in Experimental Medicine and Biology. 2002, 88 (1): 391-410 . .
-
[5]
JIAO F, SHI X R, HAN F P, YUAN Z Y. Increasing aridity, temperature and soil pH induce soil CNP imbalance in grasslands[J]. Scientific ReportsScientific Reports, 2016, 6(1): 1-9. doi:
-
[6]
魏强, 凌雷, 王多锋, 柴春山, 王芳, 钟怡铭, 陶继新, 张广忠, 李国林. 不同海拔甘肃兴隆山主要森林群落的土壤理化性质[J]. 西北林学院学报西北林学院学报, 2019, 34(4): 26-35. doi:
WEI Q, LING L, WANG D F, CHAI C S, WANG F, ZHONG Y M, TAO J X, ZHANG G Z, LI G L. Soil physicochemical properties of three main forest communities at different altitudes in Xinglong Mountain of Gansu Province[J]. Journal of Northwest Forestry UniversityJournal of Northwest Forestry University, 2019, 34(4): 26-35. doi: -
[7]
周煜杰, 贾夏, 赵永华, 陈南南, 闫瑾, 汤剑秋, 王茜, 刘黎. 秦岭火地塘真菌群落海拔分布格局[J]. 应用生态学报应用生态学报, 2021, 32(7): 2589-2596.
ZHOU Y J, JIA X, ZHAO Y H, CHEN N N, YAN J, TANG J Q, WANG Q, LIU L. Altitude distribution of fungal community in Huoditang in Qinling Mountains, Northwest China[J]. Chinese Journal of Applied EcologyChinese Journal of Applied Ecology, 2021, 32(7): 2589-2596. -
[8]
YANG Y, JI C, MA W, WANG S, WANG S, HAN W, MOHAMMAT A, ROBINSON D, SMITH P. Significant soil acidification across northern China’s grasslands during 1980s–2000s[J]. Global Change BiologyGlobal Change Biology, 2012, 18(7): 2292-2300. doi:
-
[9]
王琇瑜, 黄晓霞, 和克俭, 孙晓能, 吕曾哲舟, 张勇, 朱湄, 曾睿钦. 滇西北高寒草甸植物群落功能性状与土壤理化性质的关系[J]. 草业学报草业学报, 2020, 29(8): 6-17. doi:
WANG X Y, HUANG X X, HE K J, SUN X N, LYUZENG Z Z, ZHANG Y, ZHU M, ZENG R Q. The relationship between plant functional traits and soil physicochemical properties in alpine meadows in Northwestern Yunnan Province, China[J]. Acta Prataculturae SinicaActa Prataculturae Sinica, 2020, 29(8): 6-17. doi: -
[10]
RITCHIE G S P, DOLLING P J. The role of organic matter in soil acidification[J]. Soil ResearchSoil Research, 1985, 23(4): 569-576. doi:
-
[11]
戴万宏, 黄耀, 武丽, 俞佳. 中国地带性土壤有机质含量与酸碱度的关系[J]. 土壤学报土壤学报, 2009, 46(5): 851-860. doi:
DAI W H, HUANG Y, WU L, YU J. Relationships between soil organic matter content (SOM) and pH in topsoil of zonal soils in China[J]. Acta Pedologica SinicaActa Pedologica Sinica, 2009, 46(5): 851-860. doi: -
[12]
申紫雁, 刘昌义, 胡夏嵩, 周林虎, 许桐, 李希来, 李国荣. 黄河源区高寒草地不同深度土壤理化性质与抗剪强度关系研究[J]. 干旱区研究干旱区研究, 2021, 38(2): 392-401.
SHEN Z Y, LIU C Y, HU X S, ZHOU L H, XU T, LI X L, LI G R. Relationships between the physical and chemical properties of soil and the shear strength of root-soil composite systems at different soil depths in alpine grassland in the source region of the Yellow River[J]. Arid Zone ResearchArid Zone Research, 2021, 38(2): 392-401. -
[13]
刘慧霞, 孙宗玖, 崔雨萱, 董乙强. 新疆北疆荒漠草地土壤容重空间分布格局及其影响因素[J]. 中国草地学报中国草地学报, 2021, 43(2): 82-91.
LIU H X, SUN Z J, CUI Y X, DONG Y Q. Spatial distribution pattern and impact factors of soil bulk density in desert grassland of Northern Xinjiang[J]. Chinese Journal of GrasslandChinese Journal of Grassland, 2021, 43(2): 82-91. -
[14]
许鹏. 新疆草地资源及其利用. 乌鲁木齐: 新疆科技卫生出版社, 1993.
XU P. Grassland Resources and Utilization in Xinjiang. Urumqi: Xinjiang Science and Technology Health Press, 1993. -
[15]
新疆维吾尔自治区农业厅. 新疆土壤. 北京: 科学出版社, 1996.
Agricultural Bureau of Uygur Autonomous Region of Xinjiang. Soil in Xinjiang. Beijing: Science Press, 1996. -
[16]
鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2000.
BAO S D. Soil and Agricultural Chemistry Analysis (Third Edition). Beijing: China Agricultural Press, 2000. -
[17]
柴强. 新疆草地土壤主要性质及影响因素的分析. 乌鲁木齐: 新疆农业大学硕士学位论文, 2015.
CHAI Q. The analysis about soil main properties and its influence factors of grassland in Xinjiang. Master Thesis. Urumqi: Xinjiang Agricultural University, 2015. -
[18]
HIJMANS R J, CAMERON S E, PARRA J L, JONES P G, JARVIS A. Very high resolution interpolated climate surfaces for global land areas[J]. International Journal of ClimatologyInternational Journal of Climatology, 2005, 25(15): 1965-1978. doi:
-
[19]
李亚举, 张明军, 王圣杰, 李忠勤, 李小飞. 基于温度作为辅助变量的中国降水δ18O空间分布特征[J]. 地理科学进展地理科学进展, 2011, 30(11): 1387-1394. doi:
LI Y J, ZHANG M J, WANG S J, LI Z Q, LI X F. Precipitation in China based on temperature as an auxiliary variable δ18O spatial distribution characteristics[J]. Progress in GeographyProgress in Geography, 2011, 30(11): 1387-1394. doi: -
[20]
史超逸, 朱媛君, 萨拉, 王丹雨, 杨晓晖. 中国三种常见蒿属植物潜在地理分布及其主导气候因子[J]. 生态学杂志生态学杂志, 2021, 40(2): 512-524.
SHI C Y, ZHU Y J, SA L, WANG D Y, YANG X H. Potential geographical distribution and the dominant climatic factors of three common Artemisia species in China[J]. Chinese Journal of EcologyChinese Journal of Ecology, 2021, 40(2): 512-524. -
[21]
SWENSON N G, ENQUIST B J. Ecological and evolutionary determinants of a key plant functional trait: Wood density and its community‐wide variation across latitude and elevation[J]. American Journal of BotanyAmerican Journal of Botany, 2007, 94(3): 451-459. doi:
-
[22]
白志强, 张世熔, 钟钦梅, 王贵胤, 徐光荣, 马小杰. 四川盆地西缘土壤阳离子交换量的特征及影响因素[J]. 土壤土壤, 2020, 52(3): 581-587.
BAI Z Q, ZHANG S R, ZHONG Q M, WANG G Y, XU G R, MA X J. Characteristics and impact factors of soil cation exchange capacity (CEC) in western margin of Sichuan Basin[J]. SoilsSoils, 2020, 52(3): 581-587. -
[23]
R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing, 2012
-
[24]
高露, 张圣微, 赵鸿彬, 高文龙, 杜银龙, 林汐. 退化草原土壤理化性质空间异质性及其对土壤水分的影响[J]. 干旱区研究干旱区研究, 2020, 37(3): 607-617.
GAO L, ZHANG S W, ZHAO H B, GAO W L, DU Y L, LIN X. Spatial heterogeneity of soil physical and chemical properties in degraded grassland and their effect on soil moisture[J]. Arid Zone ResearchArid Zone Research, 2020, 37(3): 607-617. -
[25]
李浙华, 李生宇, 李丙文, 范敬龙, 蒋进, 李亚萍, 宋春武. 不同植被覆盖度沙垄土壤化学性质的空间分异[J]. 干旱区研究干旱区研究, 2020, 37(1): 160-167.
LI Z H, LI S Y, LI B W, FAN J L, JIANG J, LI Y P, SONG C W. Spatial variation of soil chemical properties of longitudinal dunes with different vegetation coverage levels[J]. Arid Zone ResearchArid Zone Research, 2020, 37(1): 160-167. -
[26]
张玲玉, 赵学强, 沈仁芳. 土壤酸化及其生态效应[J]. 生态学杂志生态学杂志, 2019, 38(6): 1900-1908.
ZHANG L Y, ZHAO X Q, SHEN R F. Soil acidification and its ecological effects[J]. Chinese Journal of EcologyChinese Journal of Ecology, 2019, 38(6): 1900-1908. -
[27]
杨鹏. 祁连山东段高寒草地土壤理化性质空间变化研究. 兰州: 甘肃农业大学硕士学位论文, 2018.
YANG P. The study of spatial variety on soil physicochemical properties of in alpine grassland areas of eastern Qilian Mountains. Master Thesis. Lanzhou: Gansu Agricultural University, 2018. -
[28]
张瑶瑶, 冷若琳, 崔霞, 宋清洁, 胥刚. 甘南州高寒草地土壤氮磷空间分布特征[J]. 草业学报草业学报, 2018, 27(12): 12-21. doi:
ZHANG Y Y, LENG R L, CUI X, SONG Q J, XU G. Spatial distribution characteristics of nitrogen and phosphorus in soil on the Gannan Plateau[J]. Acta Prataculturae SinicaActa Prataculturae Sinica, 2018, 27(12): 12-21. doi: -
[29]
万丹, 梁博, 聂晓刚, 喻武, 张博. 西藏色季拉山土壤物理性质垂直地带性[J]. 生态学报生态学报, 2018, 38(3): 1065-1074.
WAN D, LIANG B, NIE X G, YU W, ZHANG B. Research on vertical zonation of soil physical properties in Sygera Mountain, Tibet[J]. Acta Ecologica SinicaActa Ecologica Sinica, 2018, 38(3): 1065-1074. -
[30]
黄瑞农. 环境土壤学. 北京: 高等教育出版社, 1994.
HUANG R N. Environmental Soil Science. Beijing: Higher Education Press, 1994. -
[31]
BARAK P, JOBE B O, KRUEGER A R, PETERSON L A, LAIRD D A. Effects of long-term soil acidification due to nitrogen fertilizer inputs in Wisconsin[J]. Plant and SoilPlant and Soil, 1997, 197(1): 61-69. doi:
-
[32]
BARTLETT R, MCINTOSH J. pH‐dependent bonding of potassium by a Spodosol[J]. Soil Science Society of America JournalSoil Science Society of America Journal, 1969, 33(4): 535-539. doi:
-
[33]
董尔其丽. 盐渍化草甸土覆沙措施控盐效果试验研究. 呼和浩特: 内蒙古农业大学硕士学位论文, 2020.
DONG E Q L. Experimental study on the effect of salt control on saline meadow soil covering measures. Master Thesis. Huhhot: Inner Mongolia Agricultural University, 2020. -
[34]
王启龙, 曹源, 王波. 覆沙压盐对土壤理化性质及黑麦草生长的影响[J]. 西部大开发(土地开发工程研究)西部大开发(土地开发工程研究), 2018, 3(12): 53-57.
WANG Q L, CAO Y, WANG B. Effects of sand covering on physicochemical properties of saline alkali soil and ryegrass growth[J]. Land Development and Engineering ResearchLand Development and Engineering Research, 2018, 3(12): 53-57. -
[35]
张丽萍, 王小云, 张赫斯. 沙盖黄土丘陵坡地土壤理化特性随地形变化规律研究[J]. 地理科学地理科学, 2011, 31(2): 178-183.
ZHANG L P, WANG X Y, ZHANG H S. Evolution of physical and chemical characteristics of loess with different landforms in slope field under sand cover[J]. Scientia Geographica SinicaScientia Geographica Sinica, 2011, 31(2): 178-183. -
[36]
符素华. 土壤中砾石存在对入渗影响研究进展[J]. 水土保持学报水土保持学报, 2005, 19(1): 171-175. doi:
FU S H. Effect of soil containing rock fragment on infiltration[J]. Journal of Soil and Water ConservationJournal of Soil and Water Conservation, 2005, 19(1): 171-175. doi: -
[37]
王小平, 杨雪, 杨楠, 辛晓静, 曲耀冰, 赵念席, 高玉葆. 凋落物多样性及组成对凋落物分解和土壤微生物群落的影响[J]. 生态学报生态学报, 2019, 39(17): 6264-6272.
WANG X P, YANG X, YANG N, XIN X J, QU Y B, ZHAO N X, GAO Y B. Effects of litter diversity and composition on litter decomposition characteristics and soil microbial community[J]. Acta Ecologica SinicaActa Ecologica Sinica, 2019, 39(17): 6264-6272. -
[38]
黄昌勇. 土壤学(第三版). 北京: 中国农业出版社, 2010.
HUANG C Y. Soil Science (Third Edition). Beijing: China Agricultural Press, 2010. -
[39]
车明轩, 吴强, 方浩, 康成芳, 吕宸, 许蔓菁, 宫渊波. 海拔、坡向对川西高山灌丛草甸土壤氮、磷分布的影响[J]. 应用与环境生物学报应用与环境生物学报, 2021, 27(5): 1163-1169.
CHE M X, WU Q, FANG H, KANG C F, LYU C, XU M J, GONG Y B. Effects of elevation and slope aspect on soil nitrogen and phosphorus distribution of western Sichuan Plateau shrub meadow[J]. Chinese Journal of Applied and Environmental BiologyChinese Journal of Applied and Environmental Biology, 2021, 27(5): 1163-1169. -
[40]
何晓玲, 尹林克, 严成, 李和平. 天山中部北麓丘陵地带土壤发生特性与系统分类[J]. 土壤通报土壤通报, 2006, 37(5): 833-836. doi:
HE X L, YI L K, YAN C, LI H P. Genetic characteristics and taxonomy of highland soil in the north front of the central Tian Shan Mountains[J]. Chinese Journal of Soil ScienceChinese Journal of Soil Science, 2006, 37(5): 833-836. doi: -
[41]
赵欢. 中国北方草原物候的时空动态变化及其对气候的响应. 成都: 成都理工大学硕士学位论文, 2018.
ZHAO H. Spatiotemporal dynamics of vegetation phenology and its response to climate change in Northern China’s grasslands. Master Thesis. Chengdu: Chengdu University of Technology, 2018. -
[42]
于天仁. 中国土壤的酸度特点和酸化问题[J]. 土壤通报土壤通报, 1988, 19(2): 49-51.
YU T R. Characteristics and problems of soil acidity in China[J]. Chinese Journal of Soil ScienceChinese Journal of Soil Science, 1988, 19(2): 49-51. -
[43]
余倩, 段雷, 郝吉明. 中国酸沉降: 来源、影响与控制[J]. 环境科学学报环境科学学报, 2021, 41(3): 731-746.
YU Q, DUAN L, HAO J M. Acid deposition in China: Sources, effects and control[J]. Acta Scientiae CircumstantiaeActa Scientiae Circumstantiae, 2021, 41(3): 731-746. -
[44]
代静玉, 周江敏, 秦淑平. 几种有机物料分解过程中溶解性有机物质化学成分的变化[J]. 土壤通报土壤通报, 2004, 35(6): 724-727. doi:
DAI J Y, ZHOU J M, QIN S P. Dynamic changes of chemical composition of dissolved organic matter during decomposition of organic materials[J]. Chinese Journal of Soil ScienceChinese Journal of Soil Science, 2004, 35(6): 724-727. doi: -
[45]
MALHI S S, HARAPIAK J T, GILL K S, FLORE N. Long-term N rates and subsequent lime application effects on macroelements concentration in soil and in bromegrass hay[J]. Journal of Sustainable AgricultureJournal of Sustainable Agriculture, 2002, 21(1): 79-97. doi:
-
[46]
汪吉东, 许仙菊, 宁运旺, 张辉, 马洪波, 张永春. 土壤加速酸化的主要农业驱动因素研究进展[J]. 土壤土壤, 2015, 47(4): 627-633.
WANG J D, XU X J, NING Y W, ZHANG H, MA H B, ZHANG Y C. Progresses in agricultural driving factors on accelerated acidification of soils[J]. SoilsSoils, 2015, 47(4): 627-633. -
[47]
BAI Y, WU J, CLARK C M, NAEEM S, PAN Q, HUANG J, ZHANG L, HAN X. Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: Evidence from Inner Mongolia grasslands[J]. Global Change BiologyGlobal Change Biology, 2010, 16(1): 358-372. doi:
-
[48]
段雷, 黄永梅, 郝吉明, 周中平. 中国植被对氮和盐基阳离子吸收速率及其在土壤酸化中的作用[J]. 环境科学环境科学, 2002, 23(3): 68-74. doi:
DUAN L, HUANG Y M, HAO J M, ZHOU Z P. Vegetation uptake of nitrogen and base cation in China and its role in soil acidification[J]. Chinese Journal of Environmental ScienceChinese Journal of Environmental Science, 2002, 23(3): 68-74. doi: -
[49]
郭群. 氮添加对内蒙古温带典型草原土壤的酸化效应及水分的影响[J]. 应用生态学报应用生态学报, 2019, 30(10): 3285-3291.
GUO Q. Soil acidification induced by nitrogen addition and its responses to water addition in Inner Mongolia temperate steppe, China[J]. Chinese Journal of Applied EcologyChinese Journal of Applied Ecology, 2019, 30(10): 3285-3291. -
[50]
CALHOUN F, SMECK N, SLATER B, BIGHAM J, HALL G. Predicting bulk density of Ohio soils from morphology, genetic principles, and laboratory characterization data[J]. Soil Science Society of America JournalSoil Science Society of America Journal, 2001, 65(3): 811-819. doi:
-
[51]
CERDÀ A. Effects of rock fragment cover on soil infiltration, interrill runoff and erosion[J]. European Journal of Soil ScienceEuropean Journal of Soil Science, 2001, 52(1): 59-68. doi:
-
[52]
房凯, 郑加兴, 张俐, 李紫纯, 赵瑜. 砾石覆盖对土壤入渗特性影响的试验研究[J]. 中国农村水利水电中国农村水利水电, 2020, 25(2): 100-104. doi:
FANG K, ZHENG J X, ZHANG L, LI Z C, ZHAO Y. The influence of rock fragment cover on soil infiltration properties[J]. China Rural Water and HydropowerChina Rural Water and Hydropower, 2020, 25(2): 100-104. doi:
-
[1]
-
凯时66
图 2 地表微环境对新疆温性草原土壤pH变化的影响
Figure 2. Effects of the surface microenvironment on soil pH on the Xinjiang temperate steppe
NS:无显著影响;不同小写字母表示处理间差异显著(P < 0.05)。
NS: No significant difference; different lowercase letters indicate significant differences between different treatments at the 0.05 significance level.
图 3 新疆温性草原不同土层pH与海拔、年平均温度和年平均降水量之间的关系
Figure 3. Relationships of different soil layer pH levels with elevation, mean annual temperature and mean annual precipitation on the Xinjiang temperate steppe
图中实线和虚线分别代表在显著性0.05水平下的拟合关系及95%置信区间;NS:无显著相关;图4同。
The solid and dotted lines in the figures represent the fitted relationships and their confidence intervals at the significance level of 0.05, respectively; NS: No significant difference; this is applicable for Figure 4 as well.
图 4 新疆温性草原不同土层pH与土壤有机质、全氮含量、容重和土石比之间的关系
Figure 4. Relationships of different soil layer pH levels with soil organic matter, total nitrogen content, soil bulk density, and volume ratio of rock to soil on the Xinjiang temperate steppe
图 5 基于主成分分析的海拔(Ele)、年平均温度(MAT)、年平均降水量(MAP)、土层(Layer)、土壤有机质(SOM)、土壤全氮(STN)含量、土壤容重(SBD)和土石比(RRS)对新疆温性草原土壤pH的影响
Figure 5. Effects of elevation (Ele), mean annual temperature (MAT), mean annual precipitation (MAP), soil layers (Layer), soil organic matter (SOM), soil total nitrogen (STN) content, soil bulk density (SBD), and ratio of rock to soil (RRS) on soil pH on the Xinjiang temperate steppe on basis of a principal component analysis
PC1、PC2、PC3和PC4分别为第一、第二、第三和第四主成分的缩写。
PC1, PC2, PC3, and PC4 are abbreviations of the first, second, third, and fourth principal components, respectively.
表 1 新疆温性草原土壤理化性质特征
Table 1. Descriptive statistics of the soil physicochemical properties on the Xinjiang temperate steppe
下载: 导出CSV
-