凯时66

欢迎访问 草业科学,今天是

围封对藏北高寒草原土壤矿质元素和群落特征的影响

郭晨睿 杨敬坡 李少伟 牛犇 马娇林 武建双

引用本文: 郭晨睿,杨敬坡,李少伟,牛犇,马娇林,武建双. 围封对藏北高寒草原土壤矿质元素和群落特征的影响. 草业科学, 2022, 39(4): 645-659 doi: shu
Citation:  GUO C R, YANG J P, LI S W, NIU B, MA J L, WU J S. Effects of grazing exclusion by fencing on soil mineral elements and plant community in alpine steppes of the northern Tibetan Plateau. Pratacultural Science, 2022, 39(4): 645-659 doi: shu

围封对藏北高寒草原土壤矿质元素和群落特征的影响

    作者简介: 郭晨睿(1998-),女,河北石家庄人,在读硕士生,主要从事草地土壤生态学研究。E-mail: guo.chenrui@outlook.com
    通讯作者: 武建双(1983-),男,河北宁晋人,研究员,博导,博士,主要从事青藏高原气候变化和草地资源可持续性管理研究。E-mail: wujianshuang@caas.cn
  • 基金项目: 第二次青藏高原综合科学考察研究任务十专题二《农牧耦合绿色发展的资源基础考察研究》(2019QZKK1002)

摘要: 围栏封育是退化草地生态恢复的常见措施之一。土壤矿质元素含量影响植物个体生长发育和群落结构功能演替。为评价围栏封育对高寒草原土壤矿质元素和植物群落特征的影响,本研究于2010–2013年夏季对班戈县北拉镇和普保镇2块样地(围栏内外)进行植物和土壤采样,测定群落水平植物物种多样性、地上生物量以及表层土壤Ca、Cu、Fe、Mg、Mn和Zn含量。结果显示:1) 5~8年围栏封育只显著降低了北拉镇样地土壤Ca、Mg和Cu含量(P < 0.05),显著提高了普保镇样地土壤Cu含量(P < 0.05),对Fe、Mn和Zn含量无显著影响(P > 0.05)。2)围栏封育只显著提高了普保镇样地地上生物量(P < 0.05),对植物物种多样性无显著影响(P > 0.05)。3)方差分析结果显示,仅土壤Mg含量与地上生物量显著相关(P < 0.05),各土壤矿质元素含量对植物物种多样性均无显著影响(P > 0.05)。综上所述,短期围栏封育对高寒草原土壤矿质元素和植物群落的恢复的影响有限。

English

    1. [1]

      HARRIS R M B, LOEFFLER F, RUMM A, FISCHER C, HORCHLER P, SCHOLZ M, FOECKLER F, HENLE K.  Biological responses to extreme weather events are detectable but difficult to formally attribute to anthropogenic climate change[J]. Scientific Reports, 2020, 10(1): 14067-. doi:

    2. [2]

      张骞, 马丽, 张中华, 徐文华, 周秉荣, 宋明华, 乔安海, 王芳, 佘延娣, 杨晓渊, 郭婧, 周华坤.  青藏高寒区退化草地生态恢复: 退化现状、恢复措施、效应与展望[J]. 生态学报, 2019, 39(20): 7441-7451.
      ZHANG Q, MA L, ZHANG Z H, XU W H, ZHOU B R, SONG M H, QIAO A H, WANG F, SHE Y D, YANG X Y, GUO J, ZHOU H K.  Ecological restoration of degraded grassland in Qinghai-Tibet alpine region: Degradation status, restoration measures, effects and prospects[J]. Acta Ecologica Sinica, 2019, 39(20): 7441-7451.

    3. [3]

      DONG S K, SHANG Z H, GAO J X, BOONE R B.  Enhancing sustainability of grassland ecosystems through ecological restoration and grazing management in an era of climate change on Qinghai-Tibetan Plateau[J]. Agriculture Ecosystems & Environment, 2020, 287(C): 10668-.

    4. [4]

      LIU X, MA Z W, HUANG X T, LI L H.  How does grazing exclusion influence plant productivity and community structure in alpine grasslands of the Qinghai-Tibetan Plateau[J]. Global Ecology and Conservation, 2020, 23(): e01066-. doi:

    5. [5]

      WANG L, GAN Y T, WIESMEIER M, ZHAO G Q, ZHANG R Y, HAN G D, SIDDIQUE K H M, HOU F J.  Grazing exclusion-An effective approach for naturally restoring degraded grasslands in Northern China[J]. Land Degradation & Development, 2018, 29(12): 4439-4456.

    6. [6]

      赵景学, 祁彪, 多吉顿珠, 尚占环.  短期围栏封育对藏北3类退化高寒草地群落特征的影响[J]. 草业科学, 2011, 28(1): 59-62. doi:
      ZHAO J X, QI B, Duojidunzhu, SHANG Z H.  Effects of short-term enclose on the community characteristics of three types of degraded alpine grasslands in the north Tibet[J]. Pratacultural Science, 2011, 28(1): 59-62. doi:

    7. [7]

      FEDRIGO J K, ATAIDE P F, AZAMBUJA FILHO J, OLIVEIRA L V, JAURENA M, LACA E A, OVERBECK G E, NABINGER C.  Temporary grazing exclusion promotes rapid recovery of species richness and productivity in a long-term overgrazed Campos grassland[J]. Restoration Ecology, 2018, 26(4): 677-685. doi:

    8. [8]

      DU C J, GAO Y H.  Grazing exclusion alters ecological stoichiometry of plant and soil in degraded alpine grassland[J]. Agriculture Ecosystems and Environment, 2021, 308(): 107256-. doi:

    9. [9]

      WANG Z, ZHANG Q, STALEY C, GAO H L, ISHII S, WEI X R, LIU J, CHENG J M, HAO M D, SADOWSKY M J.  Impact of long-term grazing exclusion on soil microbial community composition and nutrient availability[J]. Biology and Fertility of Soils, 2019, 55(2): 121-134. doi:

    10. [10]

      李媛媛, 董世魁, 李小艳, 温璐.  围栏封育对黄河源区退化高寒草地植被组成及生物量的影响[J]. 草地学报, 2012, 20(2): 275-279, 286.
      LI Y Y, DONG S K, LI X Y, WEN L.  Effect of grassland enclosure on vegetation composition and production in headwater of Yellow River[J]. Acta Agrestia Sinica, 2012, 20(2): 275-279, 286.

    11. [11]

      毛绍娟, 吴启华, 祝景彬, 李红琴, 张法伟, 李英年.  藏北高寒草原群落维持性能对封育年限的响应[J]. 草业学报, 2015, 24(1): 21-30. doi:
      MAO S J, WU Q H, ZHU J B, LI H Q, ZHANG F W, LI Y N.  Response of the maitain performance in alpine grassland to enclosure on the Northern Tibetan Plateau[J]. Acta Pratacultural Sinica, 2015, 24(1): 21-30. doi:

    12. [12]

      赵彩霞, 郑大玮, 何文清, 潘志华, 胡跃高, 樊秀荣.  不同围栏年限冷蒿草原群落特征与土壤特性变化的研究[J]. 草业科学, 2006, 23(12): 89-92. doi:
      ZHAO C X, ZHENG D W, HE W Q, PAN Z H, HU Y G, FAN X R.  Study on plant community characters and soil properties of Artemisia firigida grasslands after different enclosing times[J]. Pratacultural Science, 2006, 23(12): 89-92. doi:

    13. [13]

      刘晓琴, 张翔, 张立锋, 李英年, 赵亮, 徐世晓, 李红琴, 马荣荣, 牛犇, 高玉葆, 古松.  封育年限对高寒草甸群落组分和物种多样性的影响[J]. 生态学报, 2016, 36(16): 5150-5162.
      LIU X Q, ZHANG X, ZHANG L F, LI Y N, ZHAO L, XU S X, LI H Q, MA R R, NIU B, GAO Y B, GU S.  Effects of exclosure duration on the community structure and species diversity of an alpine meadow in the Qinghai-Tibet Plateau[J]. Acta Ecologica Sinica, 2016, 36(16): 5150-5162.

    14. [14]

      YAO X X, WU J P, GONG X Y, LANG X, WANG C L, SONG S Z, AHMAD A A.  Effects of long term fencing on biomass, coverage, density, biodiversity and nutritional values of vegetation community in an alpine meadow of the Qinghai-Tibet Plateau[J]. Ecological Engineering, 2019, 130(): 80-93. doi:

    15. [15]

      杨振安, 姜林, 徐颖怡, 詹伟, 朱二雄, 陈槐.  青藏高原高寒草甸植被和土壤对短期禁牧的响应[J]. 生态学报, 2017, 37(23): 7903-7911.
      YANG Z A, JIANG L, XU Y Y, ZHAN W, ZHU E X, CHEN H.  Responses of vegetation and soil of alpine meadows on the Qinghai-Tibet Plateau to short-term grazing prohibition[J]. Acta Ecologica Sinica, 2017, 37(23): 7903-7911.

    16. [16]

      WU G L, LIU Z H, ZHANG L, CHEN J M, HU T M.  Long-term fencing improved soil properties and soil organic carbon storage in an alpine swamp meadow of western China[J]. Plant and Soil, 2010, 332(1-2): 331-337. doi:

    17. [17]

      DAI L C, FU R Y, GUO X W, DU Y G, LIN L, ZHANG F W, LI Y K, CAO G M.  Long-term grazing exclusion greatly improve carbon and nitrogen store in an alpine meadow on the northern Qinghai-Tibet Plateau[J]. Catena, 2021, 197(): 104955-. doi:

    18. [18]

      尹亚丽, 王玉琴, 李世雄, 刘燕, 赵文, 马玉寿, 鲍根生.  围封对退化高寒草甸土壤微生物群落多样性及土壤化学计量特征的影响[J]. 应用生态学报, 2019, 30(1): 127-136.
      YIN Y L, WANG Y Q, LI S X, LIU Y, ZHAO W, MA Y S, BAO G S.  Effects of enclosing on soil microbial community diversity and soil stoichiometric characteristics in a degraded alpine meadow[J]. Chinese Journal of Applied Ecolog, 2019, 30(1): 127-136.

    19. [19]

      LU X Y, YAN Y J, SUN J X, ZHANG X, CHEN Y, WANG X, CHENG G.  Short-term grazing exclusion has no impact on soil properties and nutrients of degraded alpine grassland in Tibet, China[J]. Solid Earth, 2015, 6(4): 1195-1205. doi:

    20. [20]

      江胜德, 郭兰, 王邝佳, 杨兰兰.  L-谷氨酸对白芨组培苗叶绿素含量·矿质元素吸收及生长的影响[J]. 安徽农业科学, 2015, 43(20): 143-145. doi:
      JIANG D S, GUO L, WANG K J, YANG L L.  Effects of L-glutamic acid on the chlorophyll content·mineral elements absorption and growth of tissue culture seedlings of Bletilla striata[J]. Journal of Anhui Agricultural Science, 2015, 43(20): 143-145. doi:

    21. [21]

      薛欣欣, 吴小平, 王文斌, 罗雪华, 王大鹏, 张永发, 邹碧霞.  植物-土壤系统中钾镁营养及其交互作用研究进展[J]. 土壤, 2019, 51(1): 1-10.
      XUE X X, WU X P, WANG W B, LUO X H, WANG D P, ZHANG Y F, ZOU B X.  Progress of potassium, magnesium and their interaction in plant-soil system[J]. Soils, 2019, 51(1): 1-10.

    22. [22]

      田春丽. 硒与锌对紫花苜蓿生长及品质的调控作用及其机理. 郑州: 河南农业大学博士学位论文, 2014.
      TIAN C L. Regulation of selenium and zinc on growth and quality of alfalfa and its mechanisms. PhD Thesis. Zhengzhou: Henan Agricultural University, 2014.

    23. [23]

      沙洁, 陈垣, 郭凤霞, 白刚, 周传猛.  外源Ca2+调控野生抚育独一味幼株抗寒生理特性的研究[J]. 草业学报, 2020, 29(2): 11-21. doi:
      SHA J, CHEN Y, GUO F X, BAI G, ZHOU C M.  A study of exogenously applied Ca2+ to control physiological characteristics of cold tolerance for wild fostered Lamiophlomis rotata seedlings[J]. Acta Prataculturae Sinica, 2020, 29(2): 11-21. doi:

    24. [24]

      王兴. 冬小麦东农冬麦1号抗寒拌种剂的研制与应用. 哈尔滨: 东北农业大学博士学位论文, 2015.
      WANG X. Development and application of cold resistant dressing agent of dongnongdongmai 1. PhD Thesis. Harbin: Northeast Agricultural University, 2015.

    25. [25]

      张建鹏, 李玉强, 赵学勇, 张铜会, 佘倩楠, 刘敏, 魏水莲.  围封对沙漠化草地土壤理化性质和固碳潜力恢复的影响[J]. 中国沙漠, 2017, 37(3): 491-499. doi:
      ZHANG J P, LI Y Q, ZHAO X Y, ZHANG T H, SHE Q N, LIU M, WEI S L.  Effects of exclosure on soil physicochemical properties and carbon sequestration potential recovery of desertified grassland[J]. Journal of Desert Research, 2017, 37(3): 491-499. doi:

    26. [26]

      RADUJKOVIC D, VERBRUGGEN E, SEABLOOM, E W, BAHN M, BIEDERMAN L A, BORER E T, BOUGHTON E H, CATFORD J A, CAMPIOLI M, DONOHUE I, EBELING A, ESKELINEN A, FAY P A, HANSART A, KNOPS J M H, MACDOUGALL A S, OHLERT T, VENTERINK H O, RAYNAUD X, RISCH A C, ROSCHER C, SCHUTZ M, SILVEIRA M L, STEVENS C J, VAN SUNDERT K, VIRTANEN R, WARDLE G M, WRAGG P D, VICCA S.  Soil properties as key predictors of global grassland production: Have we overlooked micronutrients?[J]. Ecology Letters, 2021, 24(12): 2713-2725. doi:

    27. [27]

      西藏自治区农牧厅. 西藏自治区草原资源与生态统计资料. 北京: 中国农业出版社, 2017.
      Tibet Autonomous Region Agricultural and Pastoral Office. Statistics of Grassland Resources and Ecology in Tibet Autonomous Region. Beijing: China Agriculture Press, 2017.

    28. [28]

      冯云飞, 李猛, 李少伟, 邸迎伟, 沈振西, 张宪洲, 余成群, 严俊, 席永士, 武建双.  2010–2017年藏北高寒退化草地禁牧恢复效果评价[J]. 草业科学, 2019, 36(4): 1148-162.
      FENG Y F, LI M, LI S W, DI Y W, SHEN Z X, ZHANG X Z, YU C Q, YAN J, XI Y S, WU J S.  Effectiveness of grazing exclusion on the restoration of degraded alpine grasslands on the Northern Tibetan Plateau from 2010 to 2017[J]. Pratacultural Science, 2019, 36(4): 1148-162.

    29. [29]

      高清竹, 万运帆, 李玉娥, 江村旺扎, 盛文萍, 王宝山, 李文福, 李颖, 郝向伟.  近期藏北地区草地景观结构及其变化特征分析[J]. 中国农业气象, 2008, 29(3): 333-337. doi:
      GAO Q Z, WAN Y F, LI Y E, Jiangcunwangzha, SHENG W P, WANG B S, LI W F, LI Y, HAO X W.  Landscape structure and changes of grassland in northern Tibet in the recent ten years[J]. Chinese Journal of Agrome teorology, 2008, 29(3): 333-337. doi:

    30. [30]

      董俊夫, 王淑平, 崔骁勇, 庞哲, 赵国强, 许宁, 汪诗平.  增施氮肥对青藏高寒草原不同类群植物群落特征的影响[J]. 草业科学, 2016, 33(11): 2291-2299. doi:
      DONG J F, WANG S P, CUI X Y, PANG Z, ZHAO G Q, XU N, WANG S P.  Effects of nitrogen addition on plant community characteristics in Tibetan alpine grassland[J]. Pratacultural Science, 2016, 33(11): 2291-2299. doi:

    31. [31]

      MCSHERRY M E, RITCHIE M E.  Effects of grazing on grassland soil carbon: A global review[J]. Global Change Biology, 2013, 19(5): 1347-1357. doi:

    32. [32]

      LI X J, ZHANG X Z, WU J S, SHEN Z X, ZHANG Y J, XU X L, FAN Y Z, ZHAO Y P, YAN W.  Root biomass distribution in alpine ecosystems of the northern Tibetan Plateau[J]. Environmental Earth Sciences, 2011, 64(7): 1911-1919. doi:

    33. [33]

      辛国省, 胡征, 周围, 杨志强, 郭旭升, 龙瑞军. 微波密闭消解ICP-AES法测定土–草–畜系统中无机元素. 光谱学与光谱分析, 2010, 30(2): 546-550.
      XIN G S, HU Z, ZHOU W, YANG Z Q, GUO X S, LONG R J. Spectroscopy and spectral analysis, 2010, 30(2): 546-550.

    34. [34]

      R CORE TEAM. R: A language and environment for statistical computing. (2021-03-31) [2021-12-04]. .

    35. [35]

      邓邦良, 袁知洋, 郭晓敏.  武功山草甸土壤微量元素分布及对人为干扰的响应[J]. 草业科学, 2015, 32(10): 1555-1560. doi:
      DENG B L, YUAN Z Y, GUO X M.  Microelement distributions and responses to human disturbance in meadow soil of Wugong Mountain[J]. Pratacultural Science, 2015, 32(10): 1555-1560. doi:

    36. [36]

      李天才, 陈桂琛, 曹广民, 张德罡.  青海湖北岸退化草地和封育草地中钾、钙、镁等矿质常量元素特征[J]. 草地学报, 2011, 19(5): 752-759.
      LI T C, CHEN G C, CAO G M, ZHANG D G.  Characteristics of mineral elements K, Ca, Mg in degraded grassland and enclosure grassland on the north bank of Qinghai Lake[J]. Acta Agrestia Sinica, 2011, 19(5): 752-759.

    37. [37]

      李天才, 曹广民, 柳青海, 周国英, 师生波, 张德罡.  青海湖北岸退化与封育草地土壤与优势植物中四种微量元素特征[J]. 草业学报, 2012, 21(5): 213-221. doi:
      LI T C, CAO G M, LIU Q H, ZHOU G Y, SHI S B, ZHANG D G.  Characteristics of four trace elements in soil and dominant plants from degraded grassland, enclosed grassland on the north bank of Qinghai Lake[J]. Acta Prataculturae Sinica, 2012, 21(5): 213-221. doi:

    38. [38]

      贺海升. 不同管理模式对内蒙古典型草原土壤质量影响综合评价研究. 哈尔滨: 东北林业大学博士学位论文, 2019.
      HE H S. Comprehensive soil quality evalutions of Inner Mongolia typical grassland under different management modes. PhD Thesis. Harbin: Northeast Forestry University, 2019.

    39. [39]

      王君, 沙丽清.  滇西北藏区不同土地利用方式对土壤养分的影响[J]. 东北林业大学学报, 2007, 35(10): 45-47, 66. doi:
      WANG J, SHA L Q.  Effects of land use on soil nutrients in Tibetan region, northwest Yunnan, China[J]. Journal of Northeast Forestry University, 2007, 35(10): 45-47, 66. doi:

    40. [40]

      WU J S, YANG P W, ZHANG X Z, SHEN Z X, YU C Q.  Spatial and climatic patterns of the relative abundance of poisonous vs. non-poisonous plants across the Northern Tibetan Plateau[J]. Environmental Monitoring and Assessment, 2015, 187(8): 491-. doi:

    41. [41]

      高雪峰, 韩国栋, 张功, 赵萌莉, 卢萍.  荒漠草原不同放牧强度下土壤酶活性及养分含量的动态研究[J]. 草业科学, 2007, 24(2): 10-13. doi:
      GAO X F, HAN G D, ZHANG G, ZHAO M L, LU P.  Study on dynamics of soil enzyme activity and nutrient of desert steppe under different grazing intensities[J]. Pratacultural Science, 2007, 24(2): 10-13. doi:

    42. [42]

      王玉辉, 何兴元, 周广胜.  放牧强度对羊草草原的影响[J]. 草地学报, 2002, 10(1): 45-49.
      WANG Y H, HE X Y, ZHOU G S.  Study on the responses of Leymus chinensis steppe to grazing in songnen plain[J]. Acta Agrestia Sinica, 2002, 10(1): 45-49.

    43. [43]

      杨红善, 常根柱, 周学辉, 苗小林, 路远.  放牧对肃南山地草原土-草-畜养分及有效态微量元素的影响[J]. 水土保持学报, 2010, 24(4): 103-107.
      YANG H S, CHANG G Z, ZHOU X H, MIAO X L, LU Y.  Study on influence of grazing to nutrient and available trace elements in the soil-grass-animal on the mountain grassland of Su’nan[J]. Journal of Soil and Water Conservation, 2010, 24(4): 103-107.

    44. [44]

      肖金玉, 蒲小鹏, 徐长林.  禁牧对退化草地恢复的作用[J]. 草业科学, 2015, 32(1): 138-145. doi:
      XIAO J Y, PU X P, XU C L.  Effects of grazing prohibition on restoration of degraded grassland[J]. Pratacultural Science, 2015, 32(1): 138-145. doi:

    45. [45]

      JING Z B, CHENG J M, SU J S, BAI Y, JIN J W.  Changes in plant community composition and soil properties under 3-decade grazing exclusion in semiarid grassland[J]. Ecological Engineering, 2014, 64(): 171-178. doi:

    46. [46]

      张岩. 藏羊夏季和冬季轮牧对高寒生态系统植被、土壤和家畜的作用. 兰州: 兰州大学博士学位论文, 2016.
      ZHANG Y. Effects of summer and winter rotational grazing of Tibetan sheep on plant, soil and livestock of alpine ecosystem. PhD Thesis. Lanhzou: Lanzhou University, 2016.

    47. [47]

      斯贵才, 袁艳丽, 王建, 王光鹏, 雷天柱, 张更新.  围封对当雄县高寒草原土壤微生物和酶活性的影响[J]. 草业科学, 2015, 32(1): 1-10. doi:
      SI G C, YUAN Y L, WANG J, WANG G P, LEI T Z, ZHANG G X.  Effects of fencing on microbial communities and soil enzyme activities in Damxung alpine grassland[J]. Pratacultural Science, 2015, 32(1): 1-10. doi:

    48. [48]

      万运帆, 高清竹, 林而达, 李玉娥, 秦晓波, 江村旺扎, 王宝山, 李文福.  西藏那曲地区草地植被及土壤养分状况调查[J]. 草业科学, 2006, 23(5): 7-11. doi:
      WAN Y F, GAO Q Z, LI E D, LI Y E, QIN X B, Jiangcunwangzha, WANG B S, LI W F.  Investigation of grassland growth and soil nutrient situation in Naqu prefecture of Tibet[J]. Pratacultural Science, 2006, 23(5): 7-11. doi:

    49. [49]

      吴彩霞, 傅华, 裴世芳, 秦燕.  不同草地类型土壤有效态微量元素含量特征[J]. 干旱区研究, 2008, 25(1): 137-144. doi:
      WU C X, FU H, PEI S F, QIN Y.  Study on the contents of available trace elements in different grassland soils on the western slope of the Helan mountain[J]. Arid Zone Research, 2008, 25(1): 137-144. doi:

    50. [50]

      闫玉春, 唐海萍.  围栏禁牧对内蒙古典型草原群落特征的影响[J]. 西北植物学报, 2007, 27(6): 1225-1232. doi:
      YAN Y C, TANG H P.  Effects of exclosure on typical steppe community properties in Inner Mongolia[J]. Acta Botanica Boreali-Occidentalia Sinica, 2007, 27(6): 1225-1232. doi:

    51. [51]

      ZHAO J X, SUN F D, TIAN L H.  Altitudinal pattern of grazing exclusion effects on vegetation characteristics and soil properties in alpine grasslands on the central Tibetan Plateau[J]. Journal of Soils and Sediments, 2019, 19(2): 750-761. doi:

    52. [52]

      WANG Z, LUO T X, LI R C, TANG Y H, DU M Y.  Causes for the unimodal pattern of biomass and productivity in alpine grasslands along a large altitudinal gradient in semi-arid regions[J]. Journal of Vegetation Science, 2013, 24(1): 189-201. doi:

    53. [53]

      漆良华, 张旭东, 彭镇华, 范少辉, 周金星.  不同植被恢复模式下中亚热带黄壤坡地土壤微量元素效应[J]. 应用生态学报, 2008, 19(4): 735-740.
      QI L H, ZHANG X D, PENG Z H, FAN S H, ZHOU J X.  Soil micro elements under different vegetation restoration patterns in yellow soil slope region of mid-subtropics[J]. Chinese Journal of Applied Ecology, 2008, 19(4): 735-740.

    54. [54]

      李强, 柳小妮, 张德罡, 杨军银, 何国兴, 关文昊, 刘志刚, 纪童. 祁连山自然保护区不同草地类型地上生物量和土壤微量元素特征分析. 草原与草坪, 2021, 41(3): 48-56.
      LI Q, LIU X N, ZHANG D G, YANG J Y, HE G X, GUAN W H, LIU Z G, JI T. Characteristics of aboveground biomass and soil trace elements of different grassland types in Qilian Mountain reserve. Grass Land and Turf, 2021, 41(3): 48-56.

    55. [55]

      辛国省, 龙瑞军, 尚占环, 丁路明, 郭旭生.  青藏高原东北缘放牧草地土壤矿物元素含量及分布特征[J]. 草业学报, 2012, 21(2): 8-17. doi:
      XIN G S, LONG R J, SHANG Z H, DING L M, GUO X S.  Status of some selected major and trace elements in pasture soil from northeast of the Qinghai-Tibetan Plateau[J]. Acta Pratacultural Sinica, 2012, 21(2): 8-17. doi:

    56. [56]

      胡自治, 文奋武, 卢泰安.  滩羊土–草–畜系统中的微量元素及其意义[J]. 草业学报, 1999, (1): 61-65.
      HU Z Z, WEN F W, LU T A.  Micro elements and their meaning in soil–grass–animal system of Tan-Sheep[J]. Acta Pratacultural Sinica, 1999, (1): 61-65.

    57. [57]

      FAGERIA N K, BALIGAR V C, ClARK R B.  Micronutrients in crop production[J]. Advances in Agronomy, 2002, (77): 185-268.

    1. [1]

      陈智勇谢迎新刘苗 . 围栏封育高寒草地植物地上生物量和物种多样性对关键调控因子的响应. 草业科学, 2019, 36(4): 1000-1009. doi: 

    2. [2]

      杨鹏万付刚李云龙周宇庭沈振西 . 多光谱相机估算藏北高寒草甸地上生物量. 草业科学, 2014, 8(7): 1211-1217. doi: 

    3. [3]

      全小龙郑元铭段中华陈梦词乔有明梁军张杰雪李希来 . 青海河曲草地土壤全硫及主要养分分布特征. 草业科学, 2020, 37(11): 2234-2242. doi: 

    4. [4]

      何美悦王迎新彭泽晨常生华Saman Bowatte刘永杰侯扶江 . 祁连山草原地上生物量和物种丰富度的空间格局. 草业科学, 2020, 37(10): 2012-2021. doi: 

    5. [5]

      梁茂伟梁存柱白雪苗百岭王英舜包桂荣王譞 . 一年生植物功能群对放牧草原生物量和土壤呼吸的影响. 草业科学, 2016, 10(12): 2407-2417. doi: 

    6. [6]

      郑伟董全民李世雄施建军刘玉侯宪宽宋磊 . 禁牧后环青海湖高寒草原植物群落特征动态. 草业科学, 2014, 8(6): 1126-1130. doi: 

    7. [7]

      高小源鲁旭阳 . 休牧对西藏高寒草原和高寒草甸植被与土壤特征的影响. 草业科学, 2020, 37(3): 486-496. doi: 

    8. [8]

      王树青徐义杨坤 . 甘肃省天祝县草原补奖政策实施效果. 草业科学, 2021, 38(8): 1650-1656. doi: 

    9. [9]

      赵凌平白欣谭世图樊文娜王占彬王清义 . 不同年限封育对黄土高原典型草原地上植被的影响. 草业科学, 2018, 12(1): 27-35. doi: 

    10. [10]

      陈有超马书琴鲁旭阳 . 藏北高寒草原典型物种凋落物分解与养分动态. 草业科学, 2019, 36(4): 1066-1073. doi: 

    11. [11]

      孙磊刘玉武高林魏学红 . 藏北退化草地群落生物量与土壤养分的关系. 草业科学, 2016, 10(6): 1062-1069. doi: 

    12. [12]

      张帆李元淳王新朱剑霄 . 青藏高原高寒草甸退化对草地群落生物量及其分配的影响. 草业科学, 2021, 38(8): 1451-1458. doi: 

    13. [13]

      张绪校唐川江周俗张新跃 . 应用MODIS进行草原生物量估测误差原因分析. 草业科学, 2014, 8(9): 1653-1658. doi: 

    14. [14]

      苟晓伟常生华程云湘侯扶江 . 中国北方草原生物量年际动态. 草业科学, 2016, 10(4): 739-747. doi: 

    15. [15]

      王玲施建军史慧兰欧卫友王超邢云飞 . 氮磷添加对环青海湖高寒草原牧草营养成分和土壤养分的影响. 草业科学, 2019, 36(12): 3065-3075. doi: 

    16. [16]

      高海燕红梅霍利霞刘鹏飞常菲 . 水氮耦合对荒漠草原植物物种多样性及生物量的影响. 草业科学, 2018, 12(1): 36-45. doi: 

    17. [17]

      刘彤毛亮庞晓攀金少红张静郭正刚 . 青藏高原高寒草原区工程迹地面积对其恢复过程中土壤水分和养分含量变化的影响. 草业科学, 2017, 11(11): 2175-2182. doi: 

    18. [18]

      王政 . 禁牧休牧监管立法的分析与探讨. 草业科学, 2016, 10(7): 1440-1446. doi: 

    19. [19]

      张文鹏司晓林王文银高天鹏徐当会 . 氮硅添加对高寒草甸生物量和多样性的影响. 草业科学, 2016, 10(1): 38-45. doi: 

    20. [20]

      旦增塔庆白玛嘎翁多吉顿珠拉巴 . 围封年限对西藏高寒草甸植被特征与土壤养分的影响. 草业科学, 2018, 12(1): 10-17. doi: 

  • 凯时66

    图 1  各采样年份矿质常量元素含量

    Figure 1.  Mineral macronutrient contents in each sampling year

    不同大写字母表示围栏内外差异显著(P < 0.05),不同小写字母表示不同年份间差异显著(P < 0.05);图2、图4同。

    Different capital letters indicate significant differences between within and outside fences for the same sampling year at the 0.05 level; and different lowercase letters indicate significant differences between different sampling years within or outside fences at the 0.05 level; this is applicable for Figure 2 and Figure 4 as well.

    图 2  各采样年份矿质微量元素含量

    Figure 2.  Mineral trace element contents in each sampling year

    图 3  各样地围栏内外矿质元素含量统计

    Figure 3.  Mineral element contents inside and outside the fences of each site

    *和**分别表示同一样地围栏内外差异显著(P < 0.05)和极显著(P < 0.01);ns表示差异不显著(P > 0.05);图5、图6同。

    * and ** indicate significant differences at the 0.05 and 0.01 levels, respectively; ns indicates non-significant differences at the 0.05 level, for a given element between within and outside fences; this is applicable for Figure 5 and Figure 6 as well.

    图 4  各采样年份地上生物量及Shannon-Wiener 指数

    Figure 4.  Aboveground biomass and Shannon-Wiener index in each sampling year

    图 5  各样地围栏内外地上生物量及Shannon-Wiener 指数

    Figure 5.   Aboveground biomass and Shannon-Wiener index inside and outside the fences of each site

    图 6  气候因子、群落特征与土壤矿质元素之间的相关系数矩阵图

    Figure 6.  Correlation coefficient matrix of climatic variables, plant community regimes and soil mineral elements

     GST:生长季气温;GSP:生长季降水;AGB:地上生物量;Shannon:香农-威纳指数;*和**分别表示相关性在0.05和0.01水平显著;图7、图8同。

    GST: growing season temperature; GSP: growing season precipitation; AGB: aboveground biomass; Shannon: Shannon-Wiener index; * and ** indicate significant correlations at the 0.05 and 0.01 levels, respectively; this is applicable for Figure 7 and Figure 8 as well.

    图 7  地上生物量与气候变量和土壤矿质元素的关系

    Figure 7.  Relationships of aboveground with climatic variables and soil mineral element contents

    图 8  Shannon-Wiener 指数与气候变量和土壤矿质元素的关系

    Figure 8.  Relationships of the Shannon-Wiener index with climatic variables and soil mineral element contents

    表 1  研究区域概况

    Table 1.  Information of study area

    样地
    Plot
    处理
    Treatment
    经度
    Longitude
    (E)
    纬度
    Latitude
    (N)
    海拔
    Altitude/
    m
    年均气温
    Annual mean
    temperature/
    年均降水
    Annual mean
    Precipitation/
    mm
    生长季气温
    Growing season
    temperature/
    生长季降水量
    Growing season
    precipitation/
    mm
    北拉镇
    Beila Town
    围封 Fenced 90°48′5.81″ 31°24′41.37″ 4603 0.166 461.0 7.544 403.4
    放牧 Grazed 90°48′8.18″ 31°24′41.07″ 4608
    普保镇
    Pubao Town
    围封 Fenced 90°18′43.46″ 31°23′39.58″ 4590 0.196 423.6 7.723 382.5
    放牧 Grazed 90°18′41.96″ 31°23′39.00″ 4596
    下载: 导出CSV

    表 2  围栏、样地、年份及其交互作用对土壤矿质元素影响的混合效应模型分析

    Table 2.  Effects of fencing, site, year, and their interactions on soil mineral elements from mixed-effect model analysis

    因素 FactorF/P钙 Ca铜 Cu铁 Fe镁 Mg锰 Mn锌 Zn
    围栏 Fence F 34.26 5.72 0.75 9.90 2.78 0.03
    P < 0.01 0.02 0.39 < 0.01 0.10 0.85
    样地 Site F 0.79 4.42 0.57 2.42 0.79 0.12
    P 0.38 0.04 0.45 0.13 0.38 0.73
    年份 Year F 0.23 2.10 2.65 2.31 3.86 0.12
    P 0.87 0.12 0.06 0.09 0.02 0.95
    围栏 × 样地 Fence × site F 30.96 62.26 0.55 19.29 2.32 2.94
    P < 0.01 < 0.01 0.46 < 0.01 0.14 0.09
    围栏 × 年份 Fence × year F 9.08 20.44 2.41 10.28 1.11 1.19
    P < 0.01 < 0.01 0.08 < 0.01 0.36 0.33
    样地 × 年份 Site × year F 0.11 0.29 0.25 0.31 0.23 0.00
    P 0.95 0.83 0.86 0.82 0.88 1.00
    围栏 × 样地 × 年份 Fence × site × year F 5.37 30.08 3.00 2.70 3.85 1.89
    P < 0.01 < 0.01 0.04 0.06 0.02 0.15
    下载: 导出CSV

    表 3  围栏、样地、年份及其交互作用对群落特征影响的混合效应模型分析

    Table 3.  Effects of fencing, site, year, and their interactions on plant community characteristics from mixed-effect model analysis

    因素
    Factor
    地上生物量
    Aboveground biomass
    Shannon-Wiener指数
    Shannon-Wiener index
    FPFP
    围栏 Fence (F) 34.26 < 0.01 1.57 0.21
    样地 Site (S) 0.77 0.39 0.44 0.51
    年份 Year (Y) 0.23 0.88 0.93 0.43
    F × S 30.96 < 0.01 0.16 0.69
    F × Y 9.08 < 0.01 3.39 0.02
    S × Y 0.11 0.95 0.35 0.79
    F × S × Y 5.37 < 0.01 2.48 0.07
    下载: 导出CSV

    表 4  地上生物量和物种多样性的协方差分析

    Table 4.  Results of ANCOVA models for above-ground biomass and biodiversity

    自变量
    Independent variables
    地上生物量 Above-ground biomassShannon-Wiener指数 Shannon-Wiener index
    Sum SqFPSum SqFP
    围栏 Fence 47.164 0.184 0.675 0.048 0.736 0.408
    钙 Ca 542.507 2.117 0.171 0.009 0.143 0.712
    围栏 × 钙 Fence × Ca 253.450 0.989 0.340 0.001 0.015 0.904
    围栏 Fence 306.279 1.287 0.279 0.019 0.318 0.583
    铜 Cu 137.543 0.578 0.462 0.031 0.511 0.488
    围栏 × 铜 Fence × Cu 618.012 2.597 0.133 0.071 1.172 0.300
    围栏 Fence 278.314 0.972 0.344 0.036 0.645 0.438
    铁 Fe 195.176 0.681 0.425 0.119 2.157 0.168
    围栏 × 铁 Fence × Fe 6.929 0.024 0.879 0.031 0.556 0.470
    围栏 Fence 73.961 0.366 0.556 0.019 0.282 0.605
    镁 Mg 1107.643 5.485 0.037 0.017 0.249 0.627
    围栏 × 镁 Fence × Mg 312.639 1.548 0.237 0.000 0.000 0.993
    围栏 Fence 298.465 1.074 0.320 0.045 0.869 0.370
    锰 Mn 159.032 0.572 0.464 0.154 2.974 0.110
    围栏 × 锰 Fence × Mn 125.275 0.451 0.515 0.026 0.506 0.491
    围栏 Fence 244.497 0.891 0.364 0.029 0.684 0.424
    锌 Zn 0.396 0.001 0.970 0.097 2.268 0.158
    围栏 × 锌 Fence × Zn 379.778 1.384 0.262 0.206 4.807 0.049
     自变量自由度均为1。
     The degree of freedom of each independent variable is 1.
    下载: 导出CSV
    凯时66
  • 加载中
图(8)表(4)
计量
  • PDF下载量:  11
  • 文章访问数:  264
  • HTML全文浏览量:  169
文章相关
  • 通讯作者:  武建双, wujianshuang@caas.cn
  • 收稿日期:  2021-11-06
  • 接受日期:  2021-12-27
  • 网络出版日期:  2022-03-18
  • 刊出日期:  2022-04-15
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
凯时66