海拔 Elevation/m | 经度 Latitude | 纬度 Longitude | 优势物种 Dominant species | 生长季节(6月 – 9月)降水量 Growing season precipitation (June to September)/mm | ||||
2014 | 2015 | 2017 | 2018 | 2000–2018 | ||||
4313 | 30.50° E | 91.07° N | 丝颖针茅、黑褐苔草、小嵩草 Stipa capillata, Carex montis-everestii, Kobresia pygmaea | 467.4 | 280.7 | 412.3 | 517.6 | 397.5 |
4513 | 30.52° E | 91.06° N | 丝颖针茅、黑褐苔草、小嵩草 Stipa capillata, Carex montis-everestii, Kobresia pygmaea | 481.0 | 289.5 | 425.0 | 548.4 | 407.6 |
4693 | 30.53° E | 91.05° N | 小嵩草 Kobresia pygmaea | 493.0 | 295.4 | 435.9 | 578.8 | 416.5 |

Citation: SUN W, QI H X, FU G. Response of vegetation precipitation use efficiency to experimental warming in alpine grasslands of northern Tibet. Pratacultural Science, 2022, 39(6): 1-12 doi:

藏北高寒草地植被降水利用效率对增温的响应
English
Response of vegetation precipitation use efficiency to experimental warming in alpine grasslands of northern Tibet
-
-
-
[1]
GROSSIORD C, SEVANTO S, ADAMS H D, COLLINS A D, DICKMAN L T, MCBRANCH N, MICHALETZ S T, STOCKTON E A, VIGIL M, MCDOWELL N G. Precipitation, not air temperature, drives functional responses of trees in semi-arid ecosystems[J]. Journal of EcologyJournal of Ecology, 2017, 105(1): 163-175. doi:
-
[2]
MOKHTAR A, HE H, ALSAFADI K, MOHAMMED S, HE W, LI Y, ZHAO H, ABDULLAHI N M, GYASI A Y. Ecosystem water use efficiency response to drought over southwest China[J]. EcohydrologyEcohydrology, 2021, (): e2317-.
-
[3]
ZHANG X, DU X, ZHU Z. Effects of precipitation and temperature on precipitation use efficiency of alpine grassland in Northern Tibet, China[J]. Scientific ReportsScientific Reports, 2020, 10(1): 1-9. doi:
-
[4]
LIU Z, HUANG M. Assessing spatio-temporal variations of precipitation-use efficiency over Tibetan grasslands using MODIS and in-situ observations[J]. Frontiers of Earth ScienceFrontiers of Earth Science, 2016, 10(4): 784-793. doi:
-
[5]
VERMEIRE L T, HEITSCHMIDT R K, PINELLA M. Primary productivity and precipitation-use efficiency in mixed-grass prairie: A comparison of northern and southern US sites[J]. Rangeland Ecology & ManagementRangeland Ecology & Management, 2009, 62(3): 230-239.
-
[6]
PRINCE S D, DE COLSTOUN E B, KRAXITZ L L. Evidence from rain-use efficiencies does not indicate extensive Sahelian desertification[J]. Global Change BiologyGlobal Change Biology, 1998, 4(4): 359-374. doi:
-
[7]
MOWLL W, BLUMENTHAL D M, CHERWIN K, SMITH A, SYMSTD A J, VERMERIE L T, COLLINS S L, SMITH M D, KNAPP A K. Climatic controls of aboveground net primary production in semi-arid grasslands along a latitudinal gradient portend low sensitivity to warming[J]. OecologiaOecologia, 2015, 177(4): 959-969. doi:
-
[8]
HU Z, YU G, FAN J, ZHONG H, WANG S, LI S. Precipitation-use efficiency along a 4500-km grassland transect[J]. Global Ecology and BiogeographyGlobal Ecology and Biogeography, 2010, 19(6): 842-851. doi:
-
[9]
YANG Y, FANG J, FAY P A, BELL J E, JI C. Rain use efficiency across a precipitation gradient on the Tibetan Plateau[J]. Geophysical Research LettersGeophysical Research Letters, 2010, 37(15): l15702-.
-
[10]
YANG Z, COLLINS S L, BIXBY R J, SONG H, WANG D, XIAO R. A meta-analysis of primary productivity and rain use efficiency in terrestrial grassland ecosystems[J]. Land Degradation & DevelopmentLand Degradation & Development, 2021, 32(2): 842-850.
-
[11]
段安民, 肖志祥, 吴国雄. 1979–2014年全球变暖背景下青藏高原气候变化特征[J]. 气候变化研究进展气候变化研究进展, 2016, 12(5): 374-381.
DUAN A M, XIAO Z X, WU G X. Characteristics of climate change over the Tibetan Plateau under the global warming during 1979-2014[J]. Progressus Inquisitiones de Mutatione ClimatisProgressus Inquisitiones de Mutatione Climatis, 2016, 12(5): 374-381. -
[12]
叶辉, 王军邦, 黄玫, 齐述华. 青藏高原植被降水利用效率的空间格局及其对降水和气温的响应[J]. 植物生态学报植物生态学报, 2012, 36(12): 1237-1247.
YE H, WANG J B, HUANG M, QI S H. Spatial pattern of vegetation precipitation use efficiency and its response to precipitation and temperature on the Qinghai-Xizang Plateau of China[J]. Chinese Journal of Plant EcologyChinese Journal of Plant Ecology, 2012, 36(12): 1237-1247. -
[13]
同琳静, 刘洋洋, 王倩, 李晓宇, 李建龙. 青藏高原草地降水利用效率时空动态及对气候变化的响应[J]. 干旱地区农业研究干旱地区农业研究, 2019, 37(5): 226-234. doi:
TONG L J, LIU Y Y, WANG Q, LI X N, LI J L. Spatial-temporal dynamics of precipitation use efficiency in grassland and its relationship with climate changes on Qinghai-Tibet Plateau[J]. Agricultural Research in the Arid AreasAgricultural Research in the Arid Areas, 2019, 37(5): 226-234. doi: -
[14]
CHEN Y, FENG J, YUAN X, ZHU B. Effects of warming on carbon and nitrogen cycling in alpine grassland ecosystems on the Tibetan Plateau: A meta-analysis[J]. GeodermaGeoderma, 2020, 370(): 114363-. doi:
-
[15]
PENG A, LIANDERUD K, WANG G, ZHANG L, XIAO Y, YANG Y. Plant community responses to warming modified by soil moisture in the Tibetan Plateau[J]. Arctic Antarctic and Alpine ResearchArctic Antarctic and Alpine Research, 2020, 52(1): 60-69. doi:
-
[16]
MA Z, LIU H, MI Z, ZHANG Z, WANG Y, XU W, JIANG L, HE J S. Climate warming reduces the temporal stability of plant community biomass production[J]. Nature CommunicationsNature Communications, 2017, 8(1): 1-7. doi:
-
[17]
PENG F, XUE X, XU M, YOU Q, JIAN G, MA S. Warming-induced shift towards forbs and grasses and its relation to the carbon sequestration in an alpine meadow[J]. Environmental Research LettersEnvironmental Research Letters, 2017, 12(4): 044010-. doi:
-
[18]
ZHANG X Z, SHEN Z X, FU G. A meta-analysis of the effects of experimental warming on soil carbon and nitrogen dynamics on the Tibetan Plateau[J]. Applied Soil EcologyApplied Soil Ecology, 2015, 87(): 32-38. doi:
-
[19]
FU G, SHEN Z X, SUN W, ZHONG Z M, ZHANG X Z, ZHOU Y T. A Meta-analysis of the effects of experimental warming on plant physiology and growth on the Tibetan Plateau[J]. Journal of Plant Growth RegulationJournal of Plant Growth Regulation, 2015, 34(1): 57-65. doi:
-
[20]
FU G, ZHANG X, ZHANG Y, SHI P, LI Y, ZHOU Y, YANG P SHEN Z. Experimental warming does not enhance gross primary production and above-ground biomass in the alpine meadow of Tibet[J]. Journal of Applied Remote SensingJournal of Applied Remote Sensing, 2013, 7(1): 073505-. doi:
-
[21]
ARFT A M, WALKER M D, GUREVITH J, ALATALO J M, BRET-HARTE M S, DALE M, DIEMER M, GUGERLI F, HENRY G H R, JONES M H, HOLLISTER R D, JONSDOTTIR I S, LAINE K, LEVESQUE E, MARION G M, MOLAU U, MOLGAARD P, NORDENHALL U, RASZHIVIN V, ROBINSON C H, STARR G, STENSTROM A, STENSTROM M, TOTLAND O, TURNER P L, WALKER L J, WEBBER P J, WELKER J M, WOOKEY P A. Responses of tundra plants to experimental warming: Meta-analysis of the international tundra experiment[J]. Ecological MonographsEcological Monographs, 1999, 69(4): 491-511.
-
[22]
DAWES M A, HAGEDOM F, ZUNBRUNN T, HANDA I T, HAETTENSCHWILER S, WIPF S, PIXEN C. Growth and community responses of alpine dwarf shrubs to in situ CO2 enrichment and soil warming[J]. New PhytologistNew Phytologist, 2011, 191(3): 806-818. doi:
-
[23]
YU C, HAN F, FU G. Effects of 7 years experimental warming on soil bacterial and fungal community structure in the Northern Tibet alpine meadow at three elevations[J]. Science of the Total EnvironmentScience of the Total Environment, 2019, 655(): 814-822. doi:
-
[24]
RUSTAD L E, CAMPBELL J L, MARION G M, NORBY R J, MITCHELL M J, HARTLEY A E, CORNELISSEN J H C, GUREVITCH J, GCTE N. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming[J]. OecologiaOecologia, 2001, 126(4): 543-562. doi:
-
[25]
KLEIN J A, HARTE J, ZHAO X Q. Decline in medicinal and forage species with warming is mediated by plant traits on the Tibetan Plateau[J]. EcosystemsEcosystems, 2008, 11(5): 775-789. doi:
-
[26]
MORIYAMA A, YONEMURA S, KAWASHIMA S, DU M, TANG Y. Environmental indicators for estimating the potential soil respiration rate in alpine zone[J]. Ecological IndicatorsEcological Indicators, 2013, 32(): 245-252. doi:
-
[27]
BERTOLINO L T, CAINA R S, GRAY J E. Impact of stomatal density and morphology on water-use efficiency in a changing world[J]. Frontiers in Plant ScienceFrontiers in Plant Science, 2019, 10(): 225-. doi:
-
[28]
FU G, SHEN Z X. Environmental Humidity Regulates Effects of Experimental Warming on Vegetation Index and Biomass Production in an Alpine Meadow of the Northern Tibet[J]. PloS OnePloS One, 2016, 11(10): e0165643-. doi:
-
[29]
FAY P A, BLAIR J M, SMITH M D, NIPPERT J B, CARLISLE J D, KNAPP A K. Relative effects of precipitation variability and warming on tallgrass prairie ecosystem function[J]. BiogeosciencesBiogeosciences, 2011, 8(10): 3053-3068. doi:
-
[30]
FU G, SHEN Z X, ZHANG X Z. Increased precipitation has stronger effects on plant production of an alpine meadow than does experimental warming in the Northern Tibetan Plateau[J]. Agricultural and Forest MeteorologyAgricultural and Forest Meteorology, 2018, 249(): 11-21. doi:
-
[31]
SHERRY R A, WENG E, ARNONE J A, JOHNSON D W, SCHIMEL D S, WALLACE L T, LUO Y. Lagged effects of experimental warming and doubled precipitation on annual and seasonal aboveground biomass production in a tallgrass prairie[J]. Global Change BiologyGlobal Change Biology, 2008, 14(12): 2923-2936. doi:
-
[32]
WEEDON J T, KOWALCHUK G A, ARETS R, VAN H J, VAN L R, TAS N, ROLING W F, VAN B P M. Summer warming accelerates sub-arctic peatland nitrogen cycling without changing enzyme pools or microbial community structure[J]. Global Change BiologyGlobal Change Biology, 2012, 18(1): 138-150. doi:
-
[33]
RINNAN R, MICHELSEN A, BAATH E, JONASSON S. Fifteen years of climate change manipulations alter soil microbial communities in a subarctic heath ecosystem[J]. Global Change BiologyGlobal Change Biology, 2007, 13(1): 28-39. doi:
-
[34]
LAMB E G, HAN S, LANOIL B D, HENRY G H R, BRUMMELL M E, BANERJEE S, SICILIANO S D. A High Arctic soil ecosystem resists long-term environmental manipulations[J]. Global Change BiologyGlobal Change Biology, 2011, 17(10): 3187-3194. doi:
-
[35]
GUTKNECHT J L M, FIELD C B, BALSER T C. Microbial communities and their responses to simulated global change fluctuate greatly over multiple years[J]. Global Change BiologyGlobal Change Biology, 2012, 18(7): 2256-2269. doi:
-
[36]
FREY S D, DRIJBER R, SMITH H, MELILLO J. Microbial biomass, functional capacity, and community structure after 12 years of soil warming[J]. Soil Biology & BiochemistrySoil Biology & Biochemistry, 2008, 40(11): 2904-2907.
-
[37]
DESLIPPE J R, HARTMANN M, SIMARD S W, MOHN W W. Long-term warming alters the composition of Arctic soil microbial communities[J]. Fems Microbiology EcologyFems Microbiology Ecology, 2012, 82(2): 303-315. doi:
-
[38]
KLEIN J A, HARTE J, ZHAO X Q. Experimental warming, not grazing, decreases rangeland quality on the Tibetan Plateau[J]. Ecological ApplicationsEcological Applications, 2007, 17(2): 541-557. doi:
-
[39]
TOVAR C, MELCHER I, KUSUMOTO B, CUESTA F, CLEEF A M, TSELA M R, HALLOY S, DANIEL L L, BECK S, MURIEL P, JARAMILLO R, JACOME J, CARILLA J. Plant dispersal strategies of high tropical alpine communities across the Andes[J]. Journal of EcologyJournal of Ecology, 2020, 108(5): 1910-1922. doi:
-
[40]
PEREZ F, LAVANDERO N, GLORIA O C, FELIPE H L, JARA A P, KALIN A M T. Divergence in plant traits and increased modularity underlie repeated transitions between low and high elevations in the Andean GenusLeucheria[J]. Frontiers in Plant ScienceFrontiers in Plant Science, 2020, 11(): 714-. doi:
-
[41]
MUNZBERGOVA Z, KOSOVA V, SCHNABLOVA R, RPKAYA M, SYNKOVA H, HAISEL D, WILHELMOVA N, DOSTALEK T. Plant origin, but not phylogeny, drive species ecophysiological response to projected climate[J]. Frontiers in Plant ScienceFrontiers in Plant Science, 2020, 11(): 400-. doi:
-
[42]
STUART C F, DIAZ S. Interactions between changing climate and biodiversity: Shaping humanity’s future COMMENT[J]. Proceedings of the National Academy of Sciences of the United States of AmericaProceedings of the National Academy of Sciences of the United States of America, 2020, 117(12): 6295-6296. doi:
-
[43]
WANG J, YU C, FU G. Warming reconstructs the elevation distributions of aboveground net primary production, plant species and phylogenetic diversity in alpine grasslands[J]. Ecological IndicatorsEcological Indicators, 2021, 133(): 108355-. doi:
-
[1]
-
凯时66
图 1 4年平均的环境温湿度和植物生产的海拔变异和增温效应
Figure 1. Comparison of four-years average environmental temperature and moisture conditions, and plant production among elevations and between the control and warming treatments
*表示同一海拔对照和增温处理间在P < 0.05水平差异显著,不同大写字母表示对照或增温处理下不同海拔间在P < 0.05水平上差异显著;下图同。
* indicates a significant difference between the control and warming treatments at the same elevation at the 0.05 level. Different uppercase letters indicate significant differences among the three elevations for the control and warming treatments at the same elevation, at the 0.05 level; this is applicable for the following figures as well.
图 2 归一化植被指数降水利用效率的海拔变异和增温效应
Figure 2. Elevation variation and warming effects of precipitation use efficiency in normalized difference vegetation index
图 4 地上生物量降水利用效率的海拔变异和增温效应
Figure 4. Elevation variation and warming effects of precipitation use efficiency in aboveground biomass
图 3 土壤调节植被指数降水利用效率的海拔变异和增温效应
Figure 3. Elevation variation and warming effects of precipitation use efficiency in soil-adjusted vegetation index
图 5 对照和增温处理间、以及3海拔间环境温湿度、植物生产和降水利用效率时间稳定性的比较
Figure 5. Comparison of temporal stability of ambient temperature and humidity, plant production, and precipitation use efficiency between control and warming treatments among the three elevations
图 6 降水利用效率的时空变异(A、B、C)及其时间稳定性(D、E、F)与环境因子的关系
Figure 6. Relationships between the spatial and temporal variations of precipitation use efficiency (A, B, C) and temporal stability of precipitation use efficiency (D, E, F), and environmental factors
A和D:归一化植被指数的降水利用效率;B和E:土壤调节植被指数的降水利用效率;C和F:地上生物量的降水利用效率。
A and D: precipitation use efficiency based on normalized difference vegetation index; B and E: precipitation use efficiency based on soil-adjusted vegetation index; C and F: precipitation use efficiency based on aboveground biomass.
表 1 样地情况
Table 1. Site conditions
下载: 导出CSV
表 2 重复测量方差分析
Table 2. Repeated measurement analysis of variance
变量
Variable海拔(E)
Elevation增温(W)
Warming年份(Y)
YearE × W E × Y W × Y E × W × Y 土壤温度 Soil temperature 433.52*** 255.7*** 29.81*** 2.07 6.26*** 0.76 0.82 土壤湿度 Soil moisture% 50.61*** 20.62*** 16.63*** 0.64 3.28** 0.75 0.20 空气温度 Air temperature 752.76*** 837.11*** 111.71*** 3.40 14.15*** 2.67 1.34 饱和水汽压差 Vapor pressure deficit 427.84*** 317.47*** 538.08*** 7.29** 54.72*** 41.4*** 10.8*** 归一化植被指数
Normalized difference vegetation index83.63*** 0.11 105.82*** 0.70 5.95*** 2.57 0.65 土壤调节植被指数
Soil-adjusted vegetation index51.94*** 0.01 100.1*** 0.48 4.12** 1.26 0.51 地上生物量
Aboveground biomass49.75*** 0.07 51.68*** 0.36 7.23*** 0.38 0.26 归一化植被指数的降水利用效率
Precipitation use efficiency of NDVI65.69*** 0.41 95.32*** 0.79 3.35** 3.21* 0.76 土壤调节植被指数的降水利用效率
Precipitation use efficiency of SAVI41.33*** 0.02 116.24*** 0.60 3.37** 1.64 0.71 地上生物量的降水利用效率
Precipitation use efficiency of AGB44.92*** 0.20 38.64*** 0.38 4.91*** 0.69 0.25 *、 **和***分别表示在P < 0.05、 P < 0.01和P < 0.001水平显著。表3同。
*, **, and *** indicate significant differences at the 0.05, 0.01, and 0.001 levels, respectively. This is applicable for Table 3 as well.下载: 导出CSV
表 3 降水利用效率与环境因子的关系
Table 3. Relationships between precipitation use efficiency and environmental variables
降水利用效率
Precipitation use efficiency降水量
Precipitation土壤温度
Soil
temperature土壤湿度
Soil
moisture空气温度
Air
temperature饱和水
汽压差
Vapor pressure
deficit归一化植
被指数
Normalized difference
vegetation index土壤调节
植被指数
Soil-adjusted
vegetation index地上生物量
Aboveground
biomass时空变异
Spatial and
temporal variation归一化植被指数的降水利用效率
Precipitation use efficiency of NDVI−0.24* −0.60*** 0.35*** −0.56*** −0.37*** 0.77*** 土壤调节植被指数的降水利用效率
Precipitation use efficiency of SAVI−0.32** −0.49*** 0.23* −0.47*** −0.30** 0.81*** 地上生物量的降水利用效率
Precipitation use efficiency of AGB−0.09 −0.60*** 0.39*** −0.58*** −0.41*** 0.84*** 时间稳定性
Temporal
stability归一化植被指数的降水利用效率
Precipitation use efficiency of NDVI−0.72*** −0.07 0.42* −0.44* −0.27 0.48* 土壤调节植被指数的降水利用效率
Precipitation use efficiency of SAVI−0.35 0.07 0.13 −0.42* −0.09 0.59** 地上生物量的降水利用效率
Precipitation use efficiency of AGB−0.34 0.03 0.48* −0.21 −0.18 0.19 下载: 导出CSV
-