凯时66

欢迎访问 草业科学,今天是

藏北高寒草地植被降水利用效率对增温的响应

孙维 齐虎啸 付刚

引用本文: 孙维,齐虎啸,付刚. 藏北高寒草地植被降水利用效率对增温的响应. 草业科学, 2022, 39(6): 1-12 doi: shu
Citation:  SUN W, QI H X, FU G. Response of vegetation precipitation use efficiency to experimental warming in alpine grasslands of northern Tibet. Pratacultural Science, 2022, 39(6): 1-12 doi: shu

藏北高寒草地植被降水利用效率对增温的响应

    作者简介: 孙维(1982-),男,重庆梁平人,副研究员,硕士,研究方向为草地适应性管理。E-mail: wsun@igsnrr.ac.cn
    通讯作者: 付刚(1984-),男,河北保定人,副研究员,博士,研究方向为全球变化生态学、生态系统生态学和土壤生态学。E-mail: fugang@igsnrr.ac.cn
  • 基金项目: 中国科学院青年创新促进会会员(2020054);国家重点研发项目(2017YFA0604801);中国科学院地理科学与资源研究所秉维优秀青年人才(2018RC202);国家自然科学基金(31600432);西藏自治区饲草专项(XZ202101ZD0003N);仲巴县农业绿色发展先行先试支撑体系固定观测试验站建设

摘要: 植被降水利用效率是量化陆地生态系统碳水耦合机制的一个关键指标,然而气候变暖如何影响青藏高原高寒草地生态系统的植被降水利用效率仍不清楚。2010年在藏北高原3个海拔(4313、4513和4693 m)上布设了增温试验平台,采用开顶式增温箱模拟气候变暖。利用农业多光谱相机获得了2014–2015年和2017–2018年植被的归一化植被指数(NDVI)和土壤调节植被指数(SAVI),并利用观测的NDVI计算了地上生物量(AGB)。利用微气候观测系统对土壤温度、土壤湿度、空气温度和相对湿度进行了观测,并计算了饱和水汽压差。结果表明:试验增温极显著(P < 0.001)增加了空气温度(Ta)、土壤温度(Ts)和饱和水汽压差(VPD),而对AGB、NDVI和SDVI无显著影响。试验增温显著(P < 0.05)降低了海拔4313 m 4年平均的植被降水利用效率,即导致了相对干旱年份的植被降水利用效率的显著(P < 0.05)减少,而对相对湿润年份的植被降水利用效率无显著影响(P > 0.05)。试验增温没有显著改变海拔4513和4693 m的植被降水利用效率。总体而言,试验增温增加了3个海拔间的植被降水利用效率的差异。因此,藏北高寒草地生态系统的植被降水利用效率的温度敏感性随着海拔和观测年份的变化而变化;且气候变暖重构了藏北高原高寒草地生态系统的植被降水利用效率的海拔分布格局,即气候变暖增强了藏北不同海拔的高寒草地生态系统的植被降水利用效率的异质性。

English

    1. [1]

      GROSSIORD C, SEVANTO S, ADAMS H D, COLLINS A D, DICKMAN L T, MCBRANCH N, MICHALETZ S T, STOCKTON E A, VIGIL M, MCDOWELL N G.  Precipitation, not air temperature, drives functional responses of trees in semi-arid ecosystems[J]. Journal of Ecology, 2017, 105(1): 163-175. doi:

    2. [2]

      MOKHTAR A, HE H, ALSAFADI K, MOHAMMED S, HE W, LI Y, ZHAO H, ABDULLAHI N M, GYASI A Y.  Ecosystem water use efficiency response to drought over southwest China[J]. Ecohydrology, 2021, (): e2317-.

    3. [3]

      ZHANG X, DU X, ZHU Z.  Effects of precipitation and temperature on precipitation use efficiency of alpine grassland in Northern Tibet, China[J]. Scientific Reports, 2020, 10(1): 1-9. doi:

    4. [4]

      LIU Z, HUANG M.  Assessing spatio-temporal variations of precipitation-use efficiency over Tibetan grasslands using MODIS and in-situ observations[J]. Frontiers of Earth Science, 2016, 10(4): 784-793. doi:

    5. [5]

      VERMEIRE L T, HEITSCHMIDT R K, PINELLA M.  Primary productivity and precipitation-use efficiency in mixed-grass prairie: A comparison of northern and southern US sites[J]. Rangeland Ecology & Management, 2009, 62(3): 230-239.

    6. [6]

      PRINCE S D, DE COLSTOUN E B, KRAXITZ L L.  Evidence from rain-use efficiencies does not indicate extensive Sahelian desertification[J]. Global Change Biology, 1998, 4(4): 359-374. doi:

    7. [7]

      MOWLL W, BLUMENTHAL D M, CHERWIN K, SMITH A, SYMSTD A J, VERMERIE L T, COLLINS S L, SMITH M D, KNAPP A K.  Climatic controls of aboveground net primary production in semi-arid grasslands along a latitudinal gradient portend low sensitivity to warming[J]. Oecologia, 2015, 177(4): 959-969. doi:

    8. [8]

      HU Z, YU G, FAN J, ZHONG H, WANG S, LI S.  Precipitation-use efficiency along a 4500-km grassland transect[J]. Global Ecology and Biogeography, 2010, 19(6): 842-851. doi:

    9. [9]

      YANG Y, FANG J, FAY P A, BELL J E, JI C.  Rain use efficiency across a precipitation gradient on the Tibetan Plateau[J]. Geophysical Research Letters, 2010, 37(15): l15702-.

    10. [10]

      YANG Z, COLLINS S L, BIXBY R J, SONG H, WANG D, XIAO R.  A meta-analysis of primary productivity and rain use efficiency in terrestrial grassland ecosystems[J]. Land Degradation & Development, 2021, 32(2): 842-850.

    11. [11]

      段安民, 肖志祥, 吴国雄.  1979–2014年全球变暖背景下青藏高原气候变化特征[J]. 气候变化研究进展, 2016, 12(5): 374-381.
      DUAN A M, XIAO Z X, WU G X.  Characteristics of climate change over the Tibetan Plateau under the global warming during 1979-2014[J]. Progressus Inquisitiones de Mutatione Climatis, 2016, 12(5): 374-381.

    12. [12]

      叶辉, 王军邦, 黄玫, 齐述华.  青藏高原植被降水利用效率的空间格局及其对降水和气温的响应[J]. 植物生态学报, 2012, 36(12): 1237-1247.
      YE H, WANG J B, HUANG M, QI S H.  Spatial pattern of vegetation precipitation use efficiency and its response to precipitation and temperature on the Qinghai-Xizang Plateau of China[J]. Chinese Journal of Plant Ecology, 2012, 36(12): 1237-1247.

    13. [13]

      同琳静, 刘洋洋, 王倩, 李晓宇, 李建龙.  青藏高原草地降水利用效率时空动态及对气候变化的响应[J]. 干旱地区农业研究, 2019, 37(5): 226-234. doi:
      TONG L J, LIU Y Y, WANG Q, LI X N, LI J L.  Spatial-temporal dynamics of precipitation use efficiency in grassland and its relationship with climate changes on Qinghai-Tibet Plateau[J]. Agricultural Research in the Arid Areas, 2019, 37(5): 226-234. doi:

    14. [14]

      CHEN Y, FENG J, YUAN X, ZHU B.  Effects of warming on carbon and nitrogen cycling in alpine grassland ecosystems on the Tibetan Plateau: A meta-analysis[J]. Geoderma, 2020, 370(): 114363-. doi:

    15. [15]

      PENG A, LIANDERUD K, WANG G, ZHANG L, XIAO Y, YANG Y.  Plant community responses to warming modified by soil moisture in the Tibetan Plateau[J]. Arctic Antarctic and Alpine Research, 2020, 52(1): 60-69. doi:

    16. [16]

      MA Z, LIU H, MI Z, ZHANG Z, WANG Y, XU W, JIANG L, HE J S.  Climate warming reduces the temporal stability of plant community biomass production[J]. Nature Communications, 2017, 8(1): 1-7. doi:

    17. [17]

      PENG F, XUE X, XU M, YOU Q, JIAN G, MA S.  Warming-induced shift towards forbs and grasses and its relation to the carbon sequestration in an alpine meadow[J]. Environmental Research Letters, 2017, 12(4): 044010-. doi:

    18. [18]

      ZHANG X Z, SHEN Z X, FU G.  A meta-analysis of the effects of experimental warming on soil carbon and nitrogen dynamics on the Tibetan Plateau[J]. Applied Soil Ecology, 2015, 87(): 32-38. doi:

    19. [19]

      FU G, SHEN Z X, SUN W, ZHONG Z M, ZHANG X Z, ZHOU Y T.  A Meta-analysis of the effects of experimental warming on plant physiology and growth on the Tibetan Plateau[J]. Journal of Plant Growth Regulation, 2015, 34(1): 57-65. doi:

    20. [20]

      FU G, ZHANG X, ZHANG Y, SHI P, LI Y, ZHOU Y, YANG P SHEN Z.  Experimental warming does not enhance gross primary production and above-ground biomass in the alpine meadow of Tibet[J]. Journal of Applied Remote Sensing, 2013, 7(1): 073505-. doi:

    21. [21]

      ARFT A M, WALKER M D, GUREVITH J, ALATALO J M, BRET-HARTE M S, DALE M, DIEMER M, GUGERLI F, HENRY G H R, JONES M H, HOLLISTER R D, JONSDOTTIR I S, LAINE K, LEVESQUE E, MARION G M, MOLAU U, MOLGAARD P, NORDENHALL U, RASZHIVIN V, ROBINSON C H, STARR G, STENSTROM A, STENSTROM M, TOTLAND O, TURNER P L, WALKER L J, WEBBER P J, WELKER J M, WOOKEY P A.  Responses of tundra plants to experimental warming: Meta-analysis of the international tundra experiment[J]. Ecological Monographs, 1999, 69(4): 491-511.

    22. [22]

      DAWES M A, HAGEDOM F, ZUNBRUNN T, HANDA I T, HAETTENSCHWILER S, WIPF S, PIXEN C.  Growth and community responses of alpine dwarf shrubs to in situ CO2 enrichment and soil warming[J]. New Phytologist, 2011, 191(3): 806-818. doi:

    23. [23]

      YU C, HAN F, FU G.  Effects of 7 years experimental warming on soil bacterial and fungal community structure in the Northern Tibet alpine meadow at three elevations[J]. Science of the Total Environment, 2019, 655(): 814-822. doi:

    24. [24]

      RUSTAD L E, CAMPBELL J L, MARION G M, NORBY R J, MITCHELL M J, HARTLEY A E, CORNELISSEN J H C, GUREVITCH J, GCTE N.  A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming[J]. Oecologia, 2001, 126(4): 543-562. doi:

    25. [25]

      KLEIN J A, HARTE J, ZHAO X Q.  Decline in medicinal and forage species with warming is mediated by plant traits on the Tibetan Plateau[J]. Ecosystems, 2008, 11(5): 775-789. doi:

    26. [26]

      MORIYAMA A, YONEMURA S, KAWASHIMA S, DU M, TANG Y.  Environmental indicators for estimating the potential soil respiration rate in alpine zone[J]. Ecological Indicators, 2013, 32(): 245-252. doi:

    27. [27]

      BERTOLINO L T, CAINA R S, GRAY J E.  Impact of stomatal density and morphology on water-use efficiency in a changing world[J]. Frontiers in Plant Science, 2019, 10(): 225-. doi:

    28. [28]

      FU G, SHEN Z X.  Environmental Humidity Regulates Effects of Experimental Warming on Vegetation Index and Biomass Production in an Alpine Meadow of the Northern Tibet[J]. PloS One, 2016, 11(10): e0165643-. doi:

    29. [29]

      FAY P A, BLAIR J M, SMITH M D, NIPPERT J B, CARLISLE J D, KNAPP A K.  Relative effects of precipitation variability and warming on tallgrass prairie ecosystem function[J]. Biogeosciences, 2011, 8(10): 3053-3068. doi:

    30. [30]

      FU G, SHEN Z X, ZHANG X Z.  Increased precipitation has stronger effects on plant production of an alpine meadow than does experimental warming in the Northern Tibetan Plateau[J]. Agricultural and Forest Meteorology, 2018, 249(): 11-21. doi:

    31. [31]

      SHERRY R A, WENG E, ARNONE J A, JOHNSON D W, SCHIMEL D S, WALLACE L T, LUO Y.  Lagged effects of experimental warming and doubled precipitation on annual and seasonal aboveground biomass production in a tallgrass prairie[J]. Global Change Biology, 2008, 14(12): 2923-2936. doi:

    32. [32]

      WEEDON J T, KOWALCHUK G A, ARETS R, VAN H J, VAN L R, TAS N, ROLING W F, VAN B P M.  Summer warming accelerates sub-arctic peatland nitrogen cycling without changing enzyme pools or microbial community structure[J]. Global Change Biology, 2012, 18(1): 138-150. doi:

    33. [33]

      RINNAN R, MICHELSEN A, BAATH E, JONASSON S.  Fifteen years of climate change manipulations alter soil microbial communities in a subarctic heath ecosystem[J]. Global Change Biology, 2007, 13(1): 28-39. doi:

    34. [34]

      LAMB E G, HAN S, LANOIL B D, HENRY G H R, BRUMMELL M E, BANERJEE S, SICILIANO S D.  A High Arctic soil ecosystem resists long-term environmental manipulations[J]. Global Change Biology, 2011, 17(10): 3187-3194. doi:

    35. [35]

      GUTKNECHT J L M, FIELD C B, BALSER T C.  Microbial communities and their responses to simulated global change fluctuate greatly over multiple years[J]. Global Change Biology, 2012, 18(7): 2256-2269. doi:

    36. [36]

      FREY S D, DRIJBER R, SMITH H, MELILLO J.  Microbial biomass, functional capacity, and community structure after 12 years of soil warming[J]. Soil Biology & Biochemistry, 2008, 40(11): 2904-2907.

    37. [37]

      DESLIPPE J R, HARTMANN M, SIMARD S W, MOHN W W.  Long-term warming alters the composition of Arctic soil microbial communities[J]. Fems Microbiology Ecology, 2012, 82(2): 303-315. doi:

    38. [38]

      KLEIN J A, HARTE J, ZHAO X Q.  Experimental warming, not grazing, decreases rangeland quality on the Tibetan Plateau[J]. Ecological Applications, 2007, 17(2): 541-557. doi:

    39. [39]

      TOVAR C, MELCHER I, KUSUMOTO B, CUESTA F, CLEEF A M, TSELA M R, HALLOY S, DANIEL L L, BECK S, MURIEL P, JARAMILLO R, JACOME J, CARILLA J.  Plant dispersal strategies of high tropical alpine communities across the Andes[J]. Journal of Ecology, 2020, 108(5): 1910-1922. doi:

    40. [40]

      PEREZ F, LAVANDERO N, GLORIA O C, FELIPE H L, JARA A P, KALIN A M T.  Divergence in plant traits and increased modularity underlie repeated transitions between low and high elevations in the Andean GenusLeucheria[J]. Frontiers in Plant Science, 2020, 11(): 714-. doi:

    41. [41]

      MUNZBERGOVA Z, KOSOVA V, SCHNABLOVA R, RPKAYA M, SYNKOVA H, HAISEL D, WILHELMOVA N, DOSTALEK T.  Plant origin, but not phylogeny, drive species ecophysiological response to projected climate[J]. Frontiers in Plant Science, 2020, 11(): 400-. doi:

    42. [42]

      STUART C F, DIAZ S.  Interactions between changing climate and biodiversity: Shaping humanity’s future COMMENT[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(12): 6295-6296. doi:

    43. [43]

      WANG J, YU C, FU G.  Warming reconstructs the elevation distributions of aboveground net primary production, plant species and phylogenetic diversity in alpine grasslands[J]. Ecological Indicators, 2021, 133(): 108355-. doi:

    1. [1]

      芝祥红独肖艳李朝周焦健刘鑫 . 河西走廊绿洲–荒漠过渡带湿生与盐生生态型芦苇种群空间分布格局分析. 草业科学, doi: 

    2. [2]

      张芊妤曾奕丰李文洁申洁王硕华王树林阿的鲁骥李岚侯扶江 . 季节放牧下青藏高原高寒草甸牧草生物量空间分布特征. 草业科学, doi: 

    3. [3]

      王亚婷张宇杜宇凡王玺赵天启古琛陈万杰赵萌莉 . 不同载畜率下短花针茅草原土壤水分空间异质性的分析. 草业科学, doi: 

    4. [4]

      张宇黄琛赵萌莉  . 取样尺度对荒漠草原土壤水分空间异质性的影响. 草业科学, 

    5. [5]

      石椿珺李艳龙程建伟张桐瑞郭颖李永宏 . 内蒙古典型草原群落内部植物和土壤空间异质性. 草业科学, doi: 

    6. [6]

      杨合龙戎郁萍穆蓁 . 不同放牧强度下羊草╋大针茅草地植被与土壤氮素的空间异质性分析. 草业科学, doi: 

    7. [7]

      王鑫杨磊赵倩张钦弟 . 半干旱黄土小流域草地群落功能性状空间异质性及环境驱动. 草业科学, doi: 

    8. [8]

      魏 乐宋乃平方 楷 . 宁夏荒漠草原植物群落的空间异质性. 草业科学, doi: 

    9. [9]

      赵科汪正芸李育庆郑天立胡健波 . 两种修复方式对青藏高原取弃土场修复后草地盖度的影响. 草业科学, doi: 

    10. [10]

      孙涛韩福贵安富博张裕年郭树江段晓峰 . 民勤荒漠绿洲过渡带白刺沙堆土壤呼吸空间异质特征. 草业科学, doi: 

    11. [11]

      刘文斗吴文君王子芝周俊宏关塬廖声熙 . 香格里拉灌木、草本植物区系与垂直分布格局. 草业科学, doi: 

    12. [12]

      普宗朝张山清 . 气候变暖对新疆不同秋眠级紫花苜蓿种植适宜性的影响. 草业科学, doi: 

    13. [13]

      黄文洁曾桐瑶黄晓东 . 青藏高原高寒草地植被物候时空变化特征. 草业科学, doi: 

    14. [14]

      田青李宗杰王建宏宋玲玲韩蓉陈博 . 摩天岭北坡东南部不同海拔梯度草本植物群落特征. 草业科学, doi: 

    15. [15]

      王娟舒朝成张红艳张静张雯娜郭正刚 . 青藏高原腹地不同海拔带青藏公路取土迹地恢复草地植物群落的特征. 草业科学, doi: 

    16. [16]

      普宗朝张山清瓦哈提王珂哈布拉哈提沙拉木冯丽晔陈亮葛怡成买买提 . 近56年乌鲁木齐市青草期水热气候条件时空变化. 草业科学, doi: 

    17. [17]

      祝萍黄麟翟俊樊江文 . 农牧交错带重点生态功能区草地载畜压力演变特征. 草业科学, doi: 

    18. [18]

       东大河林区金露梅种群空间分布格局沿海拔梯度的变化. 草业科学,

    19. [19]

      刘佳佳黄甘霖 . 锡林郭勒盟和锡林浩特市草原生态系统服务与人类福祉的关系研究综述. 草业科学, doi: 

    20. [20]

      周利光杜凤莲 . 草原畜牧业应对气候变化的适应优先项. 草业科学, doi: 

  • 凯时66

    图 1  4年平均的环境温湿度和植物生产的海拔变异和增温效应

    Figure 1.  Comparison of four-years average environmental temperature and moisture conditions, and plant production among elevations and between the control and warming treatments

    *表示同一海拔对照和增温处理间在P < 0.05水平差异显著,不同大写字母表示对照或增温处理下不同海拔间在P < 0.05水平上差异显著;下图同。

    * indicates a significant difference between the control and warming treatments at the same elevation at the 0.05 level. Different uppercase letters indicate significant differences among the three elevations for the control and warming treatments at the same elevation, at the 0.05 level; this is applicable for the following figures as well.

    图 2  归一化植被指数降水利用效率的海拔变异和增温效应

    Figure 2.  Elevation variation and warming effects of precipitation use efficiency in normalized difference vegetation index

    图 4  地上生物量降水利用效率的海拔变异和增温效应

    Figure 4.  Elevation variation and warming effects of precipitation use efficiency in aboveground biomass

    图 3  土壤调节植被指数降水利用效率的海拔变异和增温效应

    Figure 3.   Elevation variation and warming effects of precipitation use efficiency in soil-adjusted vegetation index

    图 5  对照和增温处理间、以及3海拔间环境温湿度、植物生产和降水利用效率时间稳定性的比较

    Figure 5.  Comparison of temporal stability of ambient temperature and humidity, plant production, and precipitation use efficiency between control and warming treatments among the three elevations

    图 6  降水利用效率的时空变异(A、B、C)及其时间稳定性(D、E、F)与环境因子的关系

    Figure 6.  Relationships between the spatial and temporal variations of precipitation use efficiency (A, B, C) and temporal stability of precipitation use efficiency (D, E, F), and environmental factors

    A和D:归一化植被指数的降水利用效率;B和E:土壤调节植被指数的降水利用效率;C和F:地上生物量的降水利用效率。

    A and D: precipitation use efficiency based on normalized difference vegetation index; B and E: precipitation use efficiency based on soil-adjusted vegetation index; C and F: precipitation use efficiency based on aboveground biomass.

    表 1  样地情况

    Table 1.  Site conditions

    海拔
    Elevation/m
    经度
    Latitude
    纬度
    Longitude
    优势物种
    Dominant species
    生长季节(6月 – 9月)降水量
    Growing season precipitation (June to September)/mm
    20142015201720182000–2018
    4313 30.50° E 91.07° N 丝颖针茅、黑褐苔草、小嵩草
    Stipa capillata, Carex montis-everestii
    Kobresia pygmaea
    467.4 280.7 412.3 517.6 397.5
    4513 30.52° E 91.06° N 丝颖针茅、黑褐苔草、小嵩草
    Stipa capillata, Carex montis-everestii
    Kobresia pygmaea
    481.0 289.5 425.0 548.4 407.6
    4693 30.53° E 91.05° N 小嵩草 Kobresia pygmaea 493.0 295.4 435.9 578.8 416.5
    下载: 导出CSV

    表 2  重复测量方差分析

    Table 2.  Repeated measurement analysis of variance

    变量
    Variable
    海拔(E)
    Elevation
    增温(W)
    Warming
    年份(Y)
    Year
    E × WE × YW × YE × W × Y
    土壤温度 Soil temperature 433.52*** 255.7*** 29.81*** 2.07 6.26*** 0.76 0.82
    土壤湿度 Soil moisture% 50.61*** 20.62*** 16.63*** 0.64 3.28** 0.75 0.20
    空气温度 Air temperature 752.76*** 837.11*** 111.71*** 3.40 14.15*** 2.67 1.34
    饱和水汽压差 Vapor pressure deficit 427.84*** 317.47*** 538.08*** 7.29** 54.72*** 41.4*** 10.8***
    归一化植被指数
    Normalized difference vegetation index
    83.63*** 0.11 105.82*** 0.70 5.95*** 2.57 0.65
    土壤调节植被指数
    Soil-adjusted vegetation index
    51.94*** 0.01 100.1*** 0.48 4.12** 1.26 0.51
    地上生物量
    Aboveground biomass
    49.75*** 0.07 51.68*** 0.36 7.23*** 0.38 0.26
    归一化植被指数的降水利用效率
    Precipitation use efficiency of NDVI
    65.69*** 0.41 95.32*** 0.79 3.35** 3.21* 0.76
    土壤调节植被指数的降水利用效率
    Precipitation use efficiency of SAVI
    41.33*** 0.02 116.24*** 0.60 3.37** 1.64 0.71
    地上生物量的降水利用效率
    Precipitation use efficiency of AGB
    44.92*** 0.20 38.64*** 0.38 4.91*** 0.69 0.25
     *、 **和***分别表示在P < 0.05、 P < 0.01和P < 0.001水平显著。表3同。
     *, **, and *** indicate significant differences at the 0.05, 0.01, and 0.001 levels, respectively. This is applicable for Table 3 as well.
    下载: 导出CSV

    表 3  降水利用效率与环境因子的关系

    Table 3.  Relationships between precipitation use efficiency and environmental variables

    降水利用效率
    Precipitation use efficiency
    降水量
    Precipitation
    土壤温度
    Soil
    temperature
    土壤湿度
    Soil
    moisture
    空气温度
    Air
    temperature
    饱和水
    汽压差
    Vapor pressure
    deficit
    归一化植
    被指数
    Normalized difference
    vegetation index
    土壤调节
    植被指数
    Soil-adjusted
    vegetation index
    地上生物量
    Aboveground
    biomass
    时空变异
    Spatial and
    temporal variation
    归一化植被指数的降水利用效率
    Precipitation use efficiency of NDVI
    −0.24* −0.60*** 0.35*** −0.56*** −0.37*** 0.77***
    土壤调节植被指数的降水利用效率
    Precipitation use efficiency of SAVI
    −0.32** −0.49*** 0.23* −0.47*** −0.30** 0.81***
    地上生物量的降水利用效率
    Precipitation use efficiency of AGB
    −0.09 −0.60*** 0.39*** −0.58*** −0.41*** 0.84***
    时间稳定性
    Temporal
    stability
    归一化植被指数的降水利用效率
    Precipitation use efficiency of NDVI
    −0.72*** −0.07 0.42* −0.44* −0.27 0.48*
    土壤调节植被指数的降水利用效率
    Precipitation use efficiency of SAVI
    −0.35 0.07 0.13 −0.42* −0.09 0.59**
    地上生物量的降水利用效率
    Precipitation use efficiency of AGB
    −0.34 0.03 0.48* −0.21 −0.18 0.19
    下载: 导出CSV
    凯时66
  • 加载中
图(6)表(3)
计量
  • PDF下载量:  7
  • 文章访问数:  46
  • HTML全文浏览量:  34
文章相关
  • 通讯作者:  付刚, fugang@igsnrr.ac.cn
  • 收稿日期:  2021-10-23
  • 接受日期:  2022-03-17
  • 网络出版日期:  2022-04-14
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
凯时66