凯时66

欢迎访问 草业科学,今天是

不同干扰类型下滇西北高寒草甸土壤化学计量特征

刘莉 王明浩 杨蔚 任健 张冉 田健帆 许文花 马向丽

引用本文: 刘莉,王明浩,杨蔚,任健,张冉,田健帆,许文花,马向丽. 不同干扰类型下滇西北高寒草甸土壤化学计量特征. 草业科学, 2022, 39(4): 634-644 doi: shu
Citation:  LIU L, WANG M H, YANG W, REN J, ZHANG R, TIAN J F, XU W H, MA X L. Soil stoichiometric characteristics of alpine meadow in northwest Yunnan under different disturbance types. Pratacultural Science, 2022, 39(4): 634-644 doi: shu

不同干扰类型下滇西北高寒草甸土壤化学计量特征

    作者简介: 刘莉(1998-),女,云南宣威人,在读硕士生,主要从事牧草种质资源与草地利用研究。E-mail: vorange2@126.com
    通讯作者: 马向丽(1980-),女,湖北襄阳人,副教授,博士,主要从事牧草种质资源与利用研究。E-mail: xfmaxiangli@126.com
  • 基金项目: 云南省重点研发项目(2018BB001);云南省重大科技专项-绿色食品国际合作研究中心项目(2019ZG009)

摘要: 为了解不同干扰类型对土壤养分的影响,本研究以云南迪庆州高寒草甸为对象,分析了封育 + 火烧、封育 + 施肥、封育和放牧4种不同干扰类型下的土壤碳(C)、氮(N)、磷(P)、钾(K)化学计量特征。结果表明:1)在同一类型干扰下,土壤C、N、P、K浓度随着土层深度的增加而降低。土壤C、N、P、K浓度与土层深度表现为负相关关系,均可用直线函数较好拟合。2)土壤C、N、P、K浓度以封育 + 施肥、封育地较高,其中,在0 − 30 cm土层,封育 + 施肥地土壤C、N浓度显著高于其他3种干扰(P < 0.05);在0 − 10 cm土层,封育 + 施肥地土壤P浓度显著高于其他干扰。3)在0 − 40 cm土层,放牧与封育 + 火烧地C、N、P、K浓度大多低于其他两种干扰,表明放牧和封育 + 火烧干扰下的土壤营养严重流失。4)研究区域土壤中的N决定了该地草地生态系统中的化学计量学的过程变化。且土壤中C ꞉ N平均值为29.34,高于全国高寒草原平均水平(13.6),说明研究区域内土壤有机质分解速度较快,有机质处于匮乏状态。故封育 + 施肥是该地区高寒草甸草地恢复以及放牧管理最佳措施。

English

    1. [1]

      罗久富, 周金星, 赵文霞, 董林水, 郑景明.  围栏措施对青藏高原高寒草甸群落结构和稳定性的影响[J]. 草业科学, 2017, 34(3): 565-574. doi:
      LUO J F, ZHOU J X, ZHAO W X, DONG L S, ZHENG J M.  Effect of fences on functional groups and stability of the alpine meadow plant community in the Qinghai-Tibet Plateau[J]. Pratacultural Science, 2017, 34(3): 565-574. doi:

    2. [2]

      刘玲玲. 滇西北藏区不同管理利用草地植物多样性和生物量研究. 西双版纳: 中国科学院西双版纳热带植物园硕士学位论文, 2006.
      LIU L L. A study on plant diversity and biomass of managed meadows in the Tibetan region, NW Yunnan, China. Master Thesis. Xishuangbanna: Xishuangbanna Tropical Botanico Garden, Chinese Academy of Sciences, 2006.

    3. [3]

      刘钟龄. 中国草地资源现状与区域分析. 北京: 科学出版社, 2017.
      LIU Z L. Current Status and Regional Analysis of Grassland Resources in China. Beijing: Science Press, 2017.

    4. [4]

      汪攀, 王霖娇, 盛茂银.  西南喀斯特石漠化生态系统植物多样性、土壤生态化学计量特征及其相关性分析[J]. 南方农业学报, 2018, 49(10): 1959-1969. doi:
      WANG P, WANG L J, SHENG M Y.  Plant diversity, ecological stoichiometry characteristics of soils and their correlation of the karst rocky desertification ecosystem in southwestern China[J]. Journal of Southern Agriculture, 2018, 49(10): 1959-1969. doi:

    5. [5]

      孔祥斌, 张凤荣, 齐伟, 徐艳.  集约化农区土地利用变化对土壤养分的影响: 以河北省曲周县为例[J]. 地理学报, 2003, 58(3): 333-342. doi:
      KONG X B, ZHANG F R, QI W, XU Y.  The influence of land use change on soil fertility in intensive agricultural region: A case study of Quzhou County, Hebei[J]. Acta Geographica Sinica, 2003, 58(3): 333-342. doi:

    6. [6]

      陈芙蓉, 程积民, 刘伟, 李媛, 马正锐, 魏琳.  不同干扰对黄土区典型草原土壤理化性质的影响[J]. 水土保持学报, 2012, 26(2): 105-110.
      CHEN F R, CHENG J M, LIU W, LI Y, MA Z R, WEI L.  Effects of different disturbances on soil physical and chemical properties in the typical grassland of loess region[J]. Journal of Soil and Water Conservation, 2012, 26(2): 105-110.

    7. [7]

      PERCIVAL H J, PARFITT R L, SCOTT N A.  Factors controlling soil carbon levels in New Zealand grasslands: is clay content important[J]. Soli Science Society of America Journal, 2000, 64(5): 1623-1630. doi:

    8. [8]

      俞鸿千. 不同轮牧方式对荒漠草原土壤理化性状和碳平衡的影响. 银川: 宁夏大学硕士学位论文, 2014.
      YU H Q. Effect of different grazing ways on soil physical and chemical propertices and carbon balance in steppe desert. Master Thesis. Yinchuan: Ningxia University, 2014.

    9. [9]

      巩杰, 陈利顶, 傅伯杰, 李延梅, 黄志霖, 黄奕龙, 彭鸿嘉.  黄土丘陵区小流域土地利用和植被恢复对土壤质量的影响[J]. 应用生态学报, 2004, 15(12): 2292-2296. doi:
      GONG J, CHEN L D, FU B J, LI Y M, HUANG Z L, HUANG Y L, PENG H J.  Effects of land use and vegetation restoration on soil quality in a small catchment of the Loess Plateau[J]. Chinese Journal of Applied Ecology, 2004, 15(12): 2292-2296. doi:

    10. [10]

      李政海, 绛秋.  火烧对草原土壤养分状况的影响[J]. 内蒙古大学学报(自然科学版), 1994, 25(4): 444-449.
      LI Z H, JIANG Q.  The effects of fire on the nutrient states of steppe soil[J]. Journal of Inner-Mongolia University (Natural Science Edition), 1994, 25(4): 444-449.

    11. [11]

      闫东锋, 吴桂藏, 郭丹丹, 张振, 杨喜田.  中度火干扰对林草地土壤理化特性的短期影响[J]. 中国水土保持科学, 2017, 15(4): 96-103.
      YAN D F, WU G Z, GUO D D, ZHANG Z, YANG X T.  Short-term effects of moderate fire disturbance on soil physical and chemical characteristics of woodlands and grasslands[J]. Science of Soil and Water Conservation, 2017, 15(4): 96-103.

    12. [12]

      孟勐. 大兴安岭火烧迹地植被-土壤协同恢复机制. 呼和浩特: 内蒙古农业大学博士学位论文, 2020.
      MENG M. The collaborative mechanism of vegetation-soil restoration in burned area of Daxing’anling. PhD Thesis. Hohhot: Inner Mongolia Agricultural University, 2020.

    13. [13]

      罗朝逸. 火烧对北方封育草地植物-土壤生态系统化学计量及内稳性特征的影. 咸阳: 中国科学院大学硕士学位论文, 2021.
      LUO Z Y. Effects of firing on stoichiometric characteristics and homeostasis of plant-soil system in fenced grassland of northern China. Master Thesis. Xianyang: The University of Chinese Academy of Sciences, 2021.

    14. [14]

      任璐璐, 张炳学, 韩凤鹏, 张兴昌.  黄土高原不同年限刺槐土壤化学计量特征分析[J]. 水土保持学报, 2017, 31(2): 339-344.
      REN L L, ZHANG B X, HAN F P, ZHANG X C.  Ecological stoichiometric characteristics of soils in Robinia pseudoacacia forests of differentages on the Loess Plateau[J]. Journal of Soil and Water Conservation, 2017, 31(2): 339-344.

    15. [15]

      贺金生, 韩兴国.  生态化学计量学: 探索从个体到生态系统的统一化理论[J]. 植物生态学报, 2010, 34(1): 2-6. doi:
      HE J S, HAN X G.  Ecological stoichiometry: searching for unifying principles from individuals to ecosystems[J]. Chinese Journal of Plant Ecology, 2010, 34(1): 2-6. doi:

    16. [16]

      鲁如坤. 土壤-植物营养学原理和施肥. 北京: 化学工业出版社, 1998.
      LU R K. Principles of Soil-Plant Nutrition and Fertilization. Beijing: Chemical Industry Press, 1998.

    17. [17]

      陶冶, 刘耀斌, 吴甘霖, 张元明.  准噶尔荒漠区域尺度浅层土壤化学计量特征及其空间分布格局[J]. 草业学报, 2016, 25(7): 13-23. doi:
      TAO Y, LIU Y B, WU G L, ZHANG Y M.  Regional-scale ecological stoichiometric characteristics and spatial distribution patterns of key elements in surface soils in the Junggar Desert, China[J]. Acta Prataculrurae Sinica, 2016, 25(7): 13-23. doi:

    18. [18]

      方昕, 郭雪莲, 郑荣波, 付倩.  不同放牧干扰对滇西北高原泥炭沼泽土壤生态化学计量特征的影响[J]. 水土保持研究, 2020, 27(2): 9-14.
      FANG X, GUO X L, ZHENG R B, FU Q.  Effect of difference grazing distributions on soil ecological stoichiometric characteristics in peatland of northewest Yunnan plateau[J]. Research of Soil and Water Conservation, 2020, 27(2): 9-14.

    19. [19]

      罗富成, 毕玉芬, 黄必志. 草业科学实践教学指导书. 昆明: 云南科技出版社, 2008.
      LUO F C, BI Y F, HUANG B Z. Pratacultural Science Practice Teaching Guide. Kunming: Yunnan Science Press, 2008.

    20. [20]

      李辉, 高强, 张晋京.  土壤中有机氮形态及测定方法的研究进展[J]. 中国农学通报, 2014, 30(21): 24-28. doi:
      LI H, GAO Q, ZHANG J J.  Advances of soil organic nitrogen forms and testing methods[J]. Chinese Agricultural Science Bulletin, 2014, 30(21): 24-28. doi:

    21. [21]

      鲍士旦. 土壤农化分析第3版. 北京: 中国农业出版社, 2000.
      BAO S D. Soil Agrochemical Analysis. Beijing: China Agriculture Press, 2000.

    22. [22]

      杜森, 高祥照. 土壤分析技术规范第2版. 北京: 中国农业出版社, 2006.
      DU S, GAO X Z. Technical Specifications for Soil Analysis. Beijing: China Agriculture Press, 2006.

    23. [23]

      何贵永, 孙浩智, 史小明, 齐威, 杜国祯.  青藏高原高寒湿地不同季节土壤理化性质对放牧模式的响应[J]. 草业学报, 2015, 24(4): 12-20. doi:
      HE G Y, SUN H Z, SHI X M, QI W, DU G Z.  Soil properties of Tibetan Plateau alpine wetland affected by grazing and season[J]. Acta Prataculturae Sinica, 2015, 24(4): 12-20. doi:

    24. [24]

      赵云飞, 洪苗苗, 欧延升, 黄政, 张洋洋, 汪霞.  青藏高原东部山地草地土壤碳、氮、磷元素计量特征[J]. 生态科学, 2018, 37(5): 25-32.
      ZHAO Y F, HONG M M, OU Y S, HUANG Z, ZHANG Y Y, WANG X.  The stoichiometric characteristics of soil C, N, P in mountain steppe of eastern Tibetan Plateau[J]. Ecological Science, 2018, 37(5): 25-32.

    25. [25]

      XI N X, CARRÈRE P, BLOOR J M G.  Plant community responses to precipitation and spatial pattern of nitrogen supply in an experimental grassland ecosystem[J]. Oecologia, 2015, 178(2): 329-338. doi:

    26. [26]

      陶贞, 沈承德, 高全洲, 孙彦敏, 易惟熙, 李英年.  高寒草甸土壤有机碳储量及其垂直分布特征[J]. 地理学报, 2006, 61(7): 720-728. doi:
      TAO Z, SHEN C D, GAO Q Z, SUN Y M, YI W X, LI Y N.  Soil organic carbon storage and vertical distribution of alpine meadow on the Tibetan Plateau[J]. Acta Geographica Sinica, 2006, 61(7): 720-728. doi:

    27. [27]

      李梦天, 秦燕燕, 曹建军, 许雪赟, 杨书荣, 张小芳, 龚毅帆.  青藏高原草地管理方式对土壤化学计量特征的影响[J]. 生态学杂志, 2018, 37(8): 2262-2268.
      LI M T, QIN Y Y, CAO J J, XU X B, YANG S R, ZHANG X F, GONG Y F.  Effects of grassland management patterns on soil stoichiometry on the Qinghai-Tibetan Plateau[J]. Chinese Journal of Ecological, 2018, 37(8): 2262-2268.

    28. [28]

      李金芬, 程积民, 刘伟, 古晓林.  黄土高原云雾山草地土壤有机碳、全氮分布特征[J]. 草地学报, 2010, 18(5): 661-668.
      LI J F, CHENG J M, LIU W, GU X L.  Distribution of soil organic carbon and total nitrogen of grassland in Yunwu mountain of Loess Plateau[J]. Acta Agrestia Sinica, 2010, 18(5): 661-668.

    29. [29]

      井光花. 黄土高原半干旱区草地群落结构和功能对管理措施的响应特征. 咸阳: 中国科学院大学博士学位论文, 2017.
       JING G H. Responses of grassland community structure and functioins to management practices on the semi-arid area of Loess Plateau. PhD Thesis. Xianyang: The University of Chinese Academy of Sciences, 2017.

    30. [30]

      陈芙蓉, 程积民, 刘伟, 李媛, 陈奥, 赵新宇.  不同干扰对黄土高原典型草原土壤有机碳的影响[J]. 草地学报, 2012, 20(2): 298-311.
      CHEN F R, CHENG J M, LIU W, LI Y, CHEN A, ZHAO X Y.  Effects of disturbances on organic soil carbon in the typical grassland of Loess Plateau[J]. Acta Agrestia Sinica, 2012, 20(2): 298-311.

    31. [31]

      张宇婧. 火干扰下大兴安岭森林土壤有机碳含量估算: 以呼中区为例. 南昌: 江西师范大学硕士学位论文, 2019.
      ZHANG Y J. Estimation of forest soil organic carbon content after fire disturbance in the Great Hinggan Mountains: A case study in Huzhong. Master Thesis. Nanchang: Jiangxi Normal University, 2019.

    32. [32]

      贺海升, 王琼, 王其兵, 王文杰.  火烧频率对草原土壤养分及球囊霉素相关土壤蛋白含量的影响[J]. 安徽农业科学, 2016, 44(31): 131-134. doi:
      HE H S, WANG Q, WANG Q B, WANG W J.  Impact of burning frequency on soil nutrients and Glomalin related soil protein in grassland[J]. Journal of Anhui Agricultural Sciences, 2016, 44(31): 131-134. doi:

    33. [33]

      贺海生. 不同管理模式对内蒙古典型草原土壤质量影响综合评价研究. 哈尔滨: 东北林业大学博士学位论文, 2019.
      HE H S. Comprehensive soil quality evaluations of Inner-mongolia typical grassland under different management modes. PhD Thesis. Haerbin: Northeast Forestry University, 2019.

    34. [34]

      李佶恺, 孙涛, 旺扎, 李洪影, 崔国文.  西藏地区燕麦与箭筈豌豆不同混播比例对牧草产量和质量的影响[J]. 草地学报, 2011, 19(5): 830-833.
      LI J K, SUN T, WANG Z, LI H Y, CUI G W.  Effects on mixture sowing ratio on the yield and quality of both vetch and oat in Tibet[J]. Acta Agrestia Sinica, 2011, 19(5): 830-833.

    35. [35]

      TIAN H Q, CHEN G S, ZHANG C, JERRY M M, CHARLES A S H, Pattern and variation of C: N: P ratios in China's soils: A synthesis of observational data. Biogeochemistry, 2010, 98(1-3): 139-151.

    36. [36]

      王建林, 钟志明, 王忠红, 陈宝雄, 余成群, 胡兴祥, 沈振西, 大次卓嘎, 张宪洲.  青藏高原高寒草原生态系统土壤碳氮比的分布特征[J]. 生态学报, 2014, 34(22): 6678-6691.
      WANG J L, ZHONG Z M, WANG Z H, CHEN B X, YU C Q, HU X X, SHEN Z X, Dacizhuoga, ZHANG X Z.  Soil C/N distribution characteristics of alpine steppe ecosystem in Qinhai-Tibetan Plateau[J]. ActaEcologica Sinica, 2014, 34(22): 6678-6691.

    37. [37]

      BUI E N, HENDERSON B L.  C: N: P stoichiometry in Australian soils with respect to vegetation and environmental factors[J]. Plantand Soil, 2013, 373(1-2): 553-568. doi:

    38. [38]

      王绍强, 于贵瑞.  生态系统碳氮磷元素的生态化学计量学特征[J]. 生态学报, 2008, 28(8): 3937-3947. doi:
      WANG S Q, YU G R.  Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements[J]. Acta Ecologica Sinica, 2008, 28(8): 3937-3947. doi:

    39. [39]

      杜威, 王紫泉, 和文祥, 高亚军, 曹卫东. 豆科绿肥对渭北旱塬土壤养分及生态化学计量学特征影响. 土壤学报, 2017, 54(4): 999-1008.
      DU W, WANG Z Q, HE W X, GAO Y J, CAO W D. Effects of Leguminous green manure on soil nutrients and their ecologicalstoichiometry characteristics in Weibei rainfed highland, Acta Pedologica Sinica, 2017, 54(4): 999-1008.

    40. [40]

      谭秋锦, 宋同清, 曾馥平, 彭晚霞, 杨钙仁, 杜虎.  峡谷型喀斯特不同生态系统土壤养分及其生态化学计量特征[J]. 农业现代化研究, 2014, 35(2): 225-228.
      TAN Q J, SONG T Q, ZENG F P, PENG W X, YANG G R, DU H.  Soil nutrients and ecological stoichiometry characteristics under different ecosystems in Karst canyon region[J]. Research of Agricultural Modernization, 2014, 35(2): 225-228.

    41. [41]

      PETER M V, STEPHAN H, LYDIA O, STEVEN A.  Nitrogen and nature[J]. Ambio, 2002, 31(2): 97-101. doi:

    42. [42]

      陶冶, 张元明, 周晓兵.  伊犁野果林浅层土壤养分生态化学计量特征及其影响因素[J]. 应用生态学报, 2016, 27(7): 2239-2248.
      TAO Y, ZHANG Y M, ZHOU X B.  Ecological stoichiometry of surface soil nutrient and its influencing factors in the wild fruit forest in Yili region, Xinjiang, China[J]. Chinese Journal of Applied Ecology, 2016, 27(7): 2239-2248.

    43. [43]

      敖伊敏. 不同围封年限下典型草原土壤生态化学计量特征研究. 呼和浩特: 内蒙古师范大学硕士学位论文, 2012.
      AO Y M. Study on soil ecological stoichiometey of enclosing life in typical steppe. Master Thesis. Huhehaote: Inner Mongolia Normal University, 2012.

    44. [44]

      张全军, 于秀波, 钱建鑫, 熊挺.  鄱阳湖南矶湿地优势植物群落及土壤有机质和营养元素分布特征[J]. 生态学报, 2012, 32(12): 3656-3669. doi:
      ZHANG Q J, YU X B, QIAN J X, XIONG T.  Distribution characteristics of plant communities and soil organic matter and main nutrients in the Poyang Lake Nanji Wetland[J]. Act Ecologica Sinica, 2012, 32(12): 3656-3669. doi:

    1. [1]

      刘娜白可喻杨云卉张睿洋张睿洋韩国栋韩国栋 . 放牧对内蒙古荒漠草原草地植被及土壤养分的影响. 草业科学, 2018, 12(6): 1323-1331. doi: 

    2. [2]

      张春花 . 放牧方式和施肥梯度对高寒草甸群落生产力和物种丰富度的影响. 草业科学, 2014, 8(12): 2293-2300. doi: 

    3. [3]

      赵天赐安婵李金升乔建霞唐士明罗红霞白鹭邵新庆王堃刘克思 . 不同退化程度草地土壤碳、氮对人工湖的时空响应. 草业科学, 2019, 36(1): 61-68. doi: 

    4. [4]

      崔伟赵凌平赵芙蓉 . 封育和放牧对黄土高原典型草原芽库的影响. 草业科学, 2017, 11(1): 9-15. doi: 

    5. [5]

      李建平谢应忠 . 封育对黄土高原天然草地深层土壤碳、氮储量的影响. 草业科学, 2016, 10(10): 1981-1988. doi: 

    6. [6]

      管光玉范燕敏武红旗桂芳李康宁李飞 . 封育对山地草甸草原土壤活性有机碳及碳库管理指数的影响. 草业科学, 2014, 8(9): 1618-1622. doi: 

    7. [7]

      李 强宋彦涛周道玮王敏玲陈笑莹 . 围封和放牧对退化盐碱草地 土壤碳、氮、磷储量的影响 . 草业科学, 2014, 8(10): 1811-1819. doi: 

    8. [8]

      杨合龙孙宗玖杨静马慧敏 . 封育年限对伊犁绢蒿荒漠土壤活性有机碳及碳库管理指数的影响. 草业科学, 2015, 9(12): 1945-1952. doi: 

    9. [9]

      才璐罗珠珠王林林牛伊宁李玲玲蔡立群 . 施肥对苜蓿土壤水分、养分和产量的影响:基于定位试验数据的Meta分析. 草业科学, 2021, 38(1): 160-170. doi: 

    10. [10]

      张鲜花朱进忠孙宗玖靳瑰丽郑 伟古伟容 . 放牧强度对草地牧草现存量及养分动态的影响. 草业科学, 2014, 8(1): 116-124. doi: 

    11. [11]

      徐晓凤牛德奎郭晓敏邓邦良周桂香王书丽朱丛飞罗汉东 . 放牧对武功山草甸土壤微生物生物量及酶活性的影响. 草业科学, 2018, 12(7): 1634-1640. doi: 

    12. [12]

      陈玲王璐慧国慧杨振安 . 放牧对高寒草甸植被–土壤酚类物质组成及含量的影响. 草业科学, 2021, 38(11): 2126-2134. doi: 

    13. [13]

      李江文韩国栋李治国王忠武康萨如拉任海燕于丰源 . 无芒隐子草地上部分功能性状对长期放牧的变异性响应. 草业科学, 2018, 12(5): 1179-1187. doi: 

    14. [14]

      梁茂伟梁存柱白雪苗百岭王英舜包桂荣王譞 . 一年生植物功能群对放牧草原生物量和土壤呼吸的影响. 草业科学, 2016, 10(12): 2407-2417. doi: 

    15. [15]

      刘文辉张永超梁国玲马祥 . 高寒区施肥和混播对燕麦栽培草地植物氮素储量的影响. 草业科学, 2019, 36(2): 468-479. doi: 

    16. [16]

      冯斌杨晓霞董全民张春平刘文亭俞旸张小芳孙彩彩时光杨增增张艳芬 . 高寒草地主要物种对放牧方式的响应. 草业科学, 2021, 38(3): 531-543. doi: 

    17. [17]

      王樱洁钟荣珍房义张忠远孙海霞 . 放牧季节和绵羊年龄对松嫩草地放牧绵羊血液指标的影响. 草业科学, 2018, 12(7): 1765-1771. doi: 

    18. [18]

      苏淑兰肖建设裴青生李晓东苏文将 . 放牧对高寒草地植被生长的影响及其生物量预测模型构建. 草业科学, 2019, 36(1): 20-26. doi: 

    19. [19]

      李凤霞李晓东周秉荣祁栋林王 力傅 华 . 放牧强度对三江源典型高寒草甸生物量和土壤理化特征的影响. 草业科学, 2015, 9(1): 11-18. doi: 

    20. [20]

      甘 磊彭新华谢永雄钟家尚Stephan PETHRainer HORM . 放牧对内蒙古大针茅草原土壤剪切力空间分布的影响. 草业科学, 2014, 8(2): 219-223. doi: 

  • 凯时66

    图 1  不同干扰类型各土层土壤C浓度变化

    Figure 1.  Changes in soil carbon content at different soil depths after disturbance

    不同大小写字母分别表示同一干扰类型不同土层和不同干扰类型同一土层间在0.05水平下差异显著(P < 0.05)。YS为封育 + 火烧;YF为封育 + 施肥;F为封育;M为放牧。下图同。

    Different capital and lowercase letters indicate that the same disturbance type at different soil depths and different disturbance types at the same soil depth have significant differences at the 0.05 level. YS: enclosure + fire; YF: enclosure + fertilization; F: enclosure; M: grazing. This is applicable for the following figures as well.

    图 2  不同干扰类型各土层土壤N浓度变化

    Figure 2.  Changes in soil nitrogen content at different soil depths after disturbances

    图 3  不同干扰类型各土层土壤P浓度变化

    Figure 3.  Changes in soil phosphorus content at different soil depths after disturbances

    图 4  不同干扰类型各土层土壤K浓度变化

    Figure 4.  Changes in soil potassium content at different soil depths after disturbances

    图 5  不同干扰类型对土壤C ꞉ N的影响

    Figure 5.   Effects of different interference types on the soil C ꞉ N

    图 6  不同干扰类型对土壤C ꞉ P的影响

    Figure 6.  Effects of different interference types on the soil C ꞉ P

    图 7  不同干扰类型对土壤N ꞉ P的影响

    Figure 7.  Effects of different interference types on the soil N ꞉ P

    表 1  样地设置

    Table 1.  Plot settings

    干扰类型
    Disturbance type
    利用与管理方式
    Utilization and management mode
    放牧
    Grazing (M)
    连续多年放牧利用,载畜量为4.0~4.5 只羊·hm−2
    It has been used for grazing for many years, and the carrying capacity is 4.0~4.5 sheep·hm−2
    封育
    Enclosure (F)
    2012年开始实施封育,采取全年封育方式,封育时间为6年
    Enclosure was implemented in 2012. A year-round enclosure method was adopted and the enclosure was maintained for 6 years
    封育 + 火烧
    Enclosure + fire (YS)
    在已封育6年的样地进行控制性火烧处理,火烧比例 < 30%
    Controlled fire treatment was carried out on the plots that have been sealed for 6 years. The proportion of fire was less than 30%
    封育 + 施肥
    Enclosure + fertilization
    (YF)
    在已封育6年的样地进行施肥处理,2018年3月于草地返青前一次性撒施氮、磷、钾复合肥(N ꞉ P ꞉ K = 17 ꞉ 17 ꞉ 17),施肥量30 g·m−2
    Fertilization treatment was carried out on the enclosed plot maintained 6 years. A compound fertilizer consisting of nitrogen, phosphorus, and potassium (N ꞉ P ꞉ K = 17 ꞉ 17 ꞉ 17) was sprayed at a time before the grassland turned green in March 2018. 30 g·m−2 of fertilizer was sprayed
    下载: 导出CSV

    表 2  土壤养分与土层深度的关系

    Table 2.  The relationship between soil nutrients and soil depth

    土壤养分
    Soil nutrients
    封育 + 火烧
    Enclosure + fire
    封育 + 施肥
    Enclosure + fertilization
    封育
    Enclosure
    放牧
    Grazing
    C y = −0.125x + 5.715 y = −0.235x + 11 y = −0.169x + 9.12 y = −0.194x + 8.79
    R2 = 0.872 R2 = 0.932 R2 = 0.919 R2 = 0.921
    N y = −0.060x + 2.525 y = −0.173x + 7.075 y = −0.071x + 3.495 y = −0.062x + 2.49
    R2 = 0.950 R2 = 0.988 R2 = 0.991 R2 = 0.968
    P y = −0.133x + 5.355 y = −0.225x + 8.685 y = −0.165x + 9.185 y = −0.087x + 4.935
    R2 = 0.912 R2 = 0.886 R2 = 0.776 R2 = 0.403
    K y = −0.398x + 31.085 y = −0.545x + 35.205 y = −0.390x + 27.83 y = −0.172x + 22.425
    R2 = 0.923 R2 = 0.888 R2 = 0.827 R2 = 0.883
    下载: 导出CSV

    表 3  土壤C、N、P、K及其化学计量比之间的相关性

    Table 3.  Correlation between soil C, N, P, K and their stoichiometric ratio

    指标 IndexCNPKC ꞉ NC ꞉ PC ꞉ KN ꞉ PN ꞉ KP ꞉ K
    C 1.000 0.224 0.122 −0.659**0.434 0.595*0.960**0.463 0.602*0.371
    N 1.000 0.445 0.571*−0.673**−0.139 −0.018 0.572*0.897**0.115
    P 1.000 0.139 −0.425 −0.671**0.134 −0.363 0.511 0.888**
    K 1.000 −0.849**−0.523*−0.825**0.121 0.162 −0.322
    C ꞉ N 1.000 0.691**0.585*−0.082 −0.412 −0.029
    C ꞉ P 1.000 0.543*0.628*0.035 −0.450
    C ꞉ K1.0000.2370.4080.473
    N ꞉ P 1.000 0.577*−0.461
    N ꞉ K1.0000.361
    P ꞉ K1.000
     **表示在0.01水平(双侧)上显著相关;*表示在0.05水平(双侧)上显著相关。
     ** indicate significantly correlated at the 0.01 level (two-sided); * indicate significantly correlated at the 0.05 level (two-sided).
    下载: 导出CSV
    凯时66
  • 加载中
图(7)表(3)
计量
  • PDF下载量:  13
  • 文章访问数:  259
  • HTML全文浏览量:  123
文章相关
  • 通讯作者:  马向丽, xfmaxiangli@126.com
  • 收稿日期:  2021-09-15
  • 网络出版日期:  2022-03-15
  • 刊出日期:  2022-04-15
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
凯时66