植物名称 Plant name | 草地利用率 Grassland utilization rate | 显著性 Significance | ||
中度 MG | 重度 HG | 极度 EG | ||
矮嵩草 Kobresia humilis (Kh) | 0.135 ± 0.017b | 0.110 ± 0.046b | 0.302 ± 0.044a | * |
高山嵩草 Kobresia pygmaea (Kp) | 0.036 ± 0.011 | 0.000 ± 0.000 | 0.000 ± 0.000 | * |
垂穗披碱草 Elymus nutans (En) | 0.130 ± 0.020 | 0.126 ± 0.030 | 0.065 ± 0.002 | ns |
洽草 Koeleria cristata (Kcr) | 0.000 ± 0.000 | 0.060 ± 0.007 | 0.000 ± 0.000 | ** |
冷地早熟禾 Poa crymophila (Pc) | 0.122 ± 0.019 | 0.090 ± 0.029 | 0.081 ± 0.011 | ns |
西北针茅 Stipa krylovii(Sk) | 0.196 ± 0.019a | 0.119 ± 0.023a | 0.077 ± 0.026ab | * |
赖草 Leymus secalinus (Ls) | 0.000 ± 0.000b | 0.067 ± 0.009a | 0.080 ± 0.002a | ** |
扁蓿豆 Melissitus ruthenicus (Mri) | 0.109 ± 0.032 | 0.052 ± 0.027 | 0.073 ± 0.017 | ns |
甘肃棘豆 Oxytropis kansuensis (Ok) | 0.033 ± 0.003 | 0.052 ± 0.013 | 0.045 ± 0.009 | ns |
黄芪 Astragalus propinquus (Ap) | 0.000 ± 0.000b | 0.023 ± 0.001a | 0.023 ± 0.002a | ** |
二裂委陵菜 Potentilla bifurca (Pb) | 0.031 ± 0.012 | 0.000 ± 0.000 | 0.039 ± 0.014 | ns |
翻白叶委陵菜 Maoutia puya (Mp) | 0.023 ± 0.002 | 0.027 ± 0.011 | 0.027 ± 0.003 | ns |
紫菀 Corydalis edulis (Ce) | 0.044 ± 0.003a | 0.035 ± 0.001b | 0.000 ± 0.000c | ** |
火绒草 Leontopodium leontopodioides (Ll) | 0.034 ± 0.011a | 0.000 ± 0.000b | 0.017 ± 0.001ab | * |
球花蒿 Artemisia smithii (As) | 0.047 ± 0.005b | 0.087 ± 0.016a | 0.000 ± 0.000b | ** |
蒲公英 Taraxacum mongolicum (Tm) | 0.035 ± 0.002a | 0.000 ± 0.000b | 0.031 ± 0.003a | ** |
蓝花韭 Miersia chilensis (Mc) | 0.000 ± 0.000 | 0.063 ± 0.018 | 0.000 ± 0.000 | ** |
唐松草 Thalictrum aquilegiifolium (Ta) | 0.010 ± 0.004 | 0.077 ± 0.046 | 0.000 ± 0.000 | ns |
平车前 Plantago depressa (Pd) | 0.015 ± 0.002b | 0.009 ± 0.001b | 0.034 ± 0.002a | ** |
醉马草 Achnatherum inebrians (Ai) | 0.000 ± 0.000 | 0.000 ± 0.000 | 0.106 ± 0.002 | ** |
ns,*,**分别表示P > 0.05、P < 0.05和P < 0.01;同行不同小写字母者表示差异显著(P < 0.05),无字母标注表示无显著差异(P>0.05);下同。 ns,*,** indicate P > 0.05, P < 0.05, and P < 0.01, respectively. Different lowercase letters indicate significant differences between different grassland utilization rates at the 0.05 level. No letters indicate no significant differences between different grassland utilization rates. MG, middle utilization grassland; HG, heavy utilization grassland; EG, extreme utilization grassland; this is applicable for the following tables and figures as well. |

Citation: XUAN W T, ZHAO Y J, LI Y Z, LIU J Y, WANG X Z, YU Y W. Vegetation composition and interspecific associations of alpine meadow under different utilization rates on the northeast Qinghai-Tibet Plateau. Pratacultural Science, 2022, 39(4): 625-633 doi:

青藏高原东北缘不同利用率高寒草甸植被构成及种间关联
English
Vegetation composition and interspecific associations of alpine meadow under different utilization rates on the northeast Qinghai-Tibet Plateau
-
-
-
[1]
武高林, 杜国祯. 青藏高原退化高寒草地生态系统恢复和可持续发展探讨[J]. 自然杂志自然杂志, 2007, 29(3): 159-164. doi:
WU G L, DU G Z. Discussion on restoration and sustainable development of degraded alpine grassland ecosystem on Qinghai-Tibet Plateau[J]. Chinese Journal Of NatureChinese Journal Of Nature, 2007, 29(3): 159-164. doi: -
[2]
益西措姆, 许岳飞, 付娟娟, 孙永芳, 巴桑吉巴, 尼布, 呼天明, 苗彦军. 放牧强度对西藏高寒草甸植被群落和土壤理化性质的影响[J]. 西北农林科技大学学报(自然科学版)西北农林科技大学学报(自然科学版), 2014, 42(6): 27-33.
Yixicuomu, XU Y F, FU J J, SUN Y F, Basangjiba, Nibu, HU T M, MIAO Y J. Effects of grazing intensity on vegetation community and soil physicochemical properties of alpine meadow in Tibet[J]. Journal of Northwest A & F University (Nature Science Edition)Journal of Northwest A & F University (Nature Science Edition), 2014, 42(6): 27-33. -
[3]
李文龙, 苏敏, 李自珍. 高寒草地放牧管理最优控制模式[J]. 兰州大学学报(自然科学版)兰州大学学报(自然科学版), 2008, (5): 30-34.
LI W L, SU M, LI Z Z. Optimal control pattern for grazing management in alpine meadows[J]. Journal Of Lanzhou University (Natural Sciences)Journal Of Lanzhou University (Natural Sciences), 2008, (5): 30-34. -
[4]
邢福, 郭继勋. 糙隐子草草原3个放牧演替阶段的种间联结对比分析[J]. 植物生态学报植物生态学报, 2001, (6): 693-698.
XING F, GUO J X. Comparative analysis of interspecfic association for three grazing successional stages of cleistogenes squarrosa steppe[J]. Acta Phytoecologica SinicaActa Phytoecologica Sinica, 2001, (6): 693-698. -
[5]
张金屯, 焦蓉. 关帝山神尾沟森林群落木本植物种间联结性与相关性研究[J]. 植物研究植物研究, 2003, 23(4): 458-463. doi:
ZHANG J T, JIAO R. Interspecific association between woody plants in Shenweigou of Guandi Mountains, Shanxi Province[J]. Bulletin Of Botanical ResearchBulletin Of Botanical Research, 2003, 23(4): 458-463. doi: -
[6]
施颖, 胡廷花, 高红娟, 罗巧玉, 于应文. 两种放牧模式下高寒草甸群落植被构成及稳定性特征[J]. 草业学报草业学报, 2019, 28(9): 1-10. doi:
SHI Y, HU T H, GAO H J, LUO Q Y, YU Y W. The community vegetation compostion and stability characteristics of alpine meadow under two grazing modes[J]. Acta Prataculturae SinicaActa Prataculturae Sinica, 2019, 28(9): 1-10. doi: -
[7]
罗久富, 郑景明, 周金星, 张鑫, 崔明. 青藏高原高寒草甸区铁路工程迹地植被恢复过程的种间关联性[J]. 生态学报生态学报, 2016, 36(20): 6528-6537.
LUO J F, ZHENG J M, ZHOU J X, ZHANG X, CUI M. Analysis of the interspecific associations present in an alpine meadow community undergoing revegetation on the railway-construction affected land of the Qinghai-Tibet Plateau[J]. Acta Ecologica SinicaActa Ecologica Sinica, 2016, 36(20): 6528-6537. -
[8]
魏斌, 王莹, 关士琪, 高红娟, 孔杨云, 于应文. 青藏高原东北缘高寒草甸珠芽蓼斑块植被构成和种间关联[J]. 草业科学草业科学, 2016, 33(8): 1618-1624. doi:
WEI B, WANG Y, GUAN S Q, GAO H J, KONG Y Y, YU Y W. The vegetation compostion and interspecific association of patches distributing in Polygonum viviparum alpine meadow on northeast Qinghai-Tibetan Plateau[J]. Pratacultural SciencePratacultural Science, 2016, 33(8): 1618-1624. doi: -
[9]
郭倩, 王旭丽, 张润霞, 王伟, 徐成体, 牟晓明, 冯琦胜, 于应文. 青南牧区南部嵩草草甸群落植被构成及种间关联. 草地学报, 2016, 24(2): 294-301.
GUO Q, WANG X L, ZHANG R X, WANG W, XU C L, MOU X L, FENG Q S, YU Y W. Analysis on the vegetation compostion and interspecific association of meadow in southern pastoral area of southern Qinghai Province. Acta Agrestia Sinia, 2016, 24(2): 294-301. -
[10]
牟晓明, 于应文, 张红梅, 孙红, 王虎成, 徐长林, 花立民. 牦牛粪对高寒草甸植被群落特征和生态位参数的影响[J]. 草业科学草业科学, 2013, 30(10): 1594-1601.
MOU X M, YU Y W, ZHANG H M, SUN H, WANG H C, XU C L, HUA L M. Effects of yak dung depostion community characteristics and niche parameters in alpine meadow[J]. Pratacultural SciencePratacultural Science, 2013, 30(10): 1594-1601. -
[11]
孔杨云, 于应文, 侯扶江. 牦牛粪沉积下高寒草甸植物群落种间关联研究[J]. 草业学报草业学报, 2017, 26(3): 44-52. doi:
KONG Y Y, YU Y W, HOU F J. Interspecific associations in plant communities under yak dung depositions in an alpine meadow[J]. Acta Prataculturae SinicaActa Prataculturae Sinica, 2017, 26(3): 44-52. doi: -
[12]
张金屯. 数量生态学[J]. 北京: 科学出版社北京: 科学出版社, 2011, (): 101-107.
ZHANG J T. Quantitive Ecology[J]. Beijing: Science PressBeijing: Science Press, 2011, (): 101-107. -
[13]
艳燕, 胡云锋, 刘越, 于国茂. 不同利用强度下草地植物物种多样性变化: 以正镶白旗典型温性草原区为例[J]. 资源科学资源科学, 2012, 34(6): 1032-1038.
YAN Y, HU Y F, LIU Y, YU G M. Plant diversity change with different land use type and land use intensity: Take Zhengxiangbai Banner as case study[J]. Resources ScienceResources Science, 2012, 34(6): 1032-1038. -
[14]
曹广民, 杜岩功, 梁东营, 王启兰, 王长庭. 高寒嵩草草甸的被动与主动退化分异特征及其发生机理[J]. 山地学报山地学报, 2007, 25(6): 641-648. doi:
CAO G M, DU Y G, LIANG D Y, WANG Q L, WANG C T. Character of passive-active degradation process and its mechanism in alpine Kobresia meadow[J]. Journal of Mountain ScienceJournal of Mountain Science, 2007, 25(6): 641-648. doi: -
[15]
李世雄, 王玉琴, 王彦龙, 尹亚丽. 黄河源区不同退化阶段高寒草甸植被特征[J]. 青海畜牧兽医杂志青海畜牧兽医杂志, 2020, 50(2): 27-34. doi:
LI S X, WANG Y Q, WANG Y L, YIN Y L. Vegetation characteristics of alpine meadow in different degraded stages in Yellow River source region[J]. Chinese Qinghai Journal of Animal and Veterinary SciencesChinese Qinghai Journal of Animal and Veterinary Sciences, 2020, 50(2): 27-34. doi: -
[16]
DU B Z, ZHEN L, HU Y F, YAN H M, DE GROOT R, LEEMANS R. Comparison of ecosystem services provided by grasslands with different utilization patterns in China’s Inner Mongolia Autonomous Region[J]. Journal of Geographical SciencesJournal of Geographical Sciences, 2018, 28(10): 1399-1414. doi:
-
[17]
李军豪, 杨国靖, 王少平. 青藏高原区退化高寒草甸植被和土壤特征[J]. 应用生态学报应用生态学报, 2020, 31(6): 2109-2118.
LI J H, YANG G J, WANG S P. Vegetation and soil characteristics of degraded alpine meadows on the Qinghai-Tibet Plateau, China: A review[J]. Chinese Journal of Applied EcologyChinese Journal of Applied Ecology, 2020, 31(6): 2109-2118. -
[18]
MEDINA ROLDAN E, PAZ-FERREIRO J, BARDGETT R D. Grazing exclusion affects soil and plant communities, but has no impact on soil carbon storage in an upland grassland[J]. Agriculture, Ecosystems and EnvironmentAgriculture, Ecosystems and Environment, 2012, 149(): 118-123. doi:
-
[19]
王文颖, 王启基. 高寒嵩草草甸退化生态系统植物群落结构特征及物种多样性分析[J]. 草业学报草业学报, 2001, (3): 8-14.
WANG W Y, WANG Q J. Analysis of plant community structure characteristics and species diversity of degraded kobresia meadow ecosystem[J]. Acta Prataculturae SinicaActa Prataculturae Sinica, 2001, (3): 8-14. -
[20]
陈宁, 张扬建, 朱军涛, 李军祥, 刘瑶杰, 俎佳星, 丛楠, 黄珂, 王荔. 高寒草甸退化过程中群落生产力和物种多样性 的非线性响应机制研究[J]. 植物生态学报植物生态学报, 2018, 42(1): 50-65.
CHEN N, ZHANG Y J, ZHU J T, LI J X, LIU Y J, ZU J X, CONG N, HUANG K, WANG L. Nonlinear responses of productivity and diversity of alpine meadow communities to degradation[J]. Acta Phytoecologica SinicaActa Phytoecologica Sinica, 2018, 42(1): 50-65. -
[21]
STUBBS W J, BASTOW W J. Evidence for limiting similarity in a sand dune community[J]. Journal of EcologyJournal of Ecology, 2004, 92(4): 557-567. doi:
-
[22]
王伯荪. 植物种群学. 广州: 中山大学出版社, 1989.
WANG B X. Plant Population Science. Guangzhou: Sun Yat-sen University Press, 1989.
-
[1]
-
凯时66
图 1 不同利用率高寒草甸地上经济类群生物量构成
Figure 1. Aboveground biomass composition of economic groups of alpine meadows under different unitization rates
不同小写字母表示不同利用率间差异显著(P < 0.05);下图同。
Different lowercase letters indicatea significant differences between different grassland utilization rates at the 0.05 level; this is applicable for the following figures as well.
图 3 不同利用率高寒草甸主要植物种对Spearman秩相关分析
Figure 3. Spearman rank correlation analysis of main plant species of alpine meadows under different utilization rates
正相关:▲ P < 0.001;◆ 0.001 < P
$\leqslant$ 0.01;● 0.01 < P$\leqslant$ 0.05;+ P > 0.05;负相关:△ P < 0.001;◇ 0.001 < P$\leqslant$ 0.01;○ 0.01 < P$\leqslant$ 0.05;- P > 0.05。图中斜体字母同表1。Positive correlotion: ▲ P < 0.001; ◆ 0.001 < P
$\leqslant$ 0.01; ● 0.01 < P$\leqslant$ 0.05; + P > 0.05; Negative correlotion: △ P < 0.001; ◇ 0.001 < P$\leqslant$ 0.01; ○ 0.01 < P$\leqslant$ 0.05; - P > 0.05. The italic characters in the Figure 3 are the same as in Table 1.表 1 不同利用率高寒草甸主要植物种重要值
Table 1. Important values of main plant species of alpine meadows under different unitization rates
下载: 导出CSV
表 2 不同利用率高寒草甸植物物种多样性
Table 2. Plant species diversity of alpine meadows under different unitization rates
项目
Item草地利用率 Grassland utilization rate 显著性
Significance中度 MG 重度 HG 极度 EG 物种数 Number of species 11.73 ± 0.25a 10.53 ± 0.41b 8.67 ± 0.44c ** βw指数 βw index 0.68 ± 0.02a 0.74 ± 0.01a 0.53 ± 0.04b * Shannon-Wiener指数 Shannon-Wiener index 2.37 ± 0.01a 2.46 ± 0.03a 2.29 ± 0.06b * Simpson指数 Simpson index 0.88 ± 0.01 0.90 ± 0.01 0.85 ± 0.02 ns 下载: 导出CSV
表 3 不同利用率高寒草甸主要植物种种间Jaccard指数
Table 3. Jaccard index of interspecific main plant alpine meadows under different unitization rates
指数范围
Index
range草地利用率
Grassland
utilization rate种对数
Species pair
number比例
Percentage
rate/%0.67 < JI ≤ 1.00 中度 MG 19 18 重度 HG 29 28 极度 EG 8 9 0.33 < JI ≤ 0.67 中度 MG 28 27 重度 HG 26 25 极度 EG 20 22 0 ≤ JI ≤ 0.33 中度 MG 58 55 重度 HG 50 47 极度 EG 63 69 下载: 导出CSV
-