
Citation: MIAO Y, ZHANG H Y, ZHANG L J, LIU M J, WANG S. Effects of small amounts of NaCl on alleviating damage caused to the photosynthetic activity of alfalfa seedling roots and leaves by KCl stress. Pratacultural Science, 2022, 39(5): 1-10 doi:

少量NaCl缓解KCl胁迫对紫花苜蓿幼苗根系和叶片光合活性的影响
English
Effects of small amounts of NaCl on alleviating damage caused to the photosynthetic activity of alfalfa seedling roots and leaves by KCl stress
-
Key words:
- NaCl stress /
- alfalfa /
- root growth /
- photosynthesis /
- mitigation /
- osmoregulation /
- oxidative damage
-
-
-
[1]
郭选政, 赵德云, 李保军. 新疆苜蓿生产发展及其动态[J]. 中国草地学报中国草地学报, 2000, 6(2): 62-68.
GUO X Z, ZHAO D Y, LI B J. The development of alfalfa production in Xinjiang and its dynamic[J]. Chinese Journal of GrasslandChinese Journal of Grassland, 2000, 6(2): 62-68. -
[2]
木合塔尔·吐尔洪, 木尼热·阿布都克力木, 西崎·泰, 吐尔迪·阿不利孜, 库尔班江·乌斯曼. 新疆南部地区盐渍化土壤的分布及性质特征[J]. 环境科学与技术环境科学与技术, 2008, 31(4): 22-26. doi:
Munhtar·Tuerhong, Munira·Abudukeremu, Yasushi·Nishizaki, Turdi·Abuliz, Kurbanjan·Wusiman. Distribution and characteristics of salinized soil in the south region of Xinjiang[J]. Environmental Science & TechnologyEnvironmental Science & Technology, 2008, 31(4): 22-26. doi: -
[3]
周万海, 冯瑞章, 师尚礼, 寇江涛. NO对盐胁迫下苜蓿根系生长抑制及氧化损伤的缓解效应[J]. 生态学报生态学报, 2015, 35(11): 3606-3614.
ZHOU W H, FENG R Z, SHI S L, KOU J T. Nitric oxide protection of alfalfa seedling roots against salt-induced inhibition of growth and oxidative damage[J]. Acta Ecologica SinicaActa Ecologica Sinica, 2015, 35(11): 3606-3614. -
[4]
张永志, 高文俊, 郭艳妮, 郝鲜俊. 丛枝菌根真菌对NaCl胁迫下紫花苜蓿的生理指标及光合参数的影响[J]. 草原与草坪草原与草坪, 2018, 38(4): 26-34. doi:
ZHANG Y Z, GAO W J, GUO Y N, HAO X J. The effects of arbuscular mycorrhizal fungi on physiological responses of Medicago sativa under NaCl stress[J]. Grassland and TurfGrassland and Turf, 2018, 38(4): 26-34. doi: -
[5]
TORABI M, HALIM M. Variation of root and shoot growth and free proline accumulation in Iranian alfalfa ecotypes under salt stress[J]. Journal of Food Agriculture & EnvironmentJournal of Food Agriculture & Environment, 2010, 8(3-4): 323-327.
-
[6]
ZHU J K. Plant salt tolerance[J]. Trends in Plant ScienceTrends in Plant Science, 2001, 6(2): 66-71. doi:
-
[7]
王宝山. 逆境植物生物学. 北京: 高等教育出版社, 2010.
WANG B S. Biology of Plants in Adversity. Beijing: Higher Education Press, 2010. -
[8]
王保平, 董晓燕, 董宽虎. 盐碱胁迫对紫花苜蓿幼苗生理特性的影响[J]. 草地学报草地学报, 2013, 21(6): 1124-1129.
WANG B P, DONG X Y, DONG K H. Effects of saline-alkali stress on physiological characteristics of alfalfa seedlings[J]. Acta Agrestia SinicaActa Agrestia Sinica, 2013, 21(6): 1124-1129. -
[9]
WANG X, HAN J. Changes of proline content, activity, and active isoforms of antioxidative enzymes in two alfalfa cultivars under salt stress[J]. Agricultural Sciences in ChinaAgricultural Sciences in China, 2009, 8(4): 431-440. doi:
-
[10]
寇江涛, 康文娟, 苗阳阳, 师尚礼. 外源EBR对NaCl胁迫下紫花苜蓿幼苗微量元素吸收及叶绿素荧光动力学参数的影响[J]. 中国生态农业学报中国生态农业学报, 2016, 24(3): 345-355.
KOU J T, KANG W J, MIAO Y Y, SHI S L. Effect of exogenous 2, 4-epibrassinolide on trace element absorption and chlorophyll fluorescence of Medicago sativa L. seedlings under NaCl stress[J]. Chinese Journal of Eco-AgricultureChinese Journal of Eco-Agriculture, 2016, 24(3): 345-355. -
[11]
LI R L, SHI F C, FUKUDA KENJI, YANG Y L. Effects of salt and alkali stresses on germination, growth, photosynthesis and ion accumulation in alfalfa (Medicago sativa)[J]. Soil Science & Plant NutritionSoil Science & Plant Nutrition, 2010, 56(5): 11-14.
-
[12]
蒋文博, 陈钊, 曹新龙, 牛军鹏, 郭志鹏, 崔健, 王佺珍. 外源NO对盐胁迫下紫花苜蓿生长及膜脂过氧化的影响[J]. 草业科学草业科学, 2019, 36(10): 2580-2593. doi:
JIANG W B, CHEN Z, CAO X L, NIU J P, GUO Z P, CUI J, WANG Q Z. Effects of exogenous nitric oxide on the growth and membrane lipid peroxidation of Medicago sativa under salt stress[J]. Pratacultural SciencePratacultural Science, 2019, 36(10): 2580-2593. doi: -
[13]
张建立, 黎阳, 田新春. 论紫花苜蓿在新疆草地生态建设中的作用[J]. 草食家畜草食家畜, 2006, 133(4): 54-56. doi:
ZHANG J Z, LI Y, TIAN X C. Discuss on alfalfa’s function during building grassland ecology in Xinjiang[J]. Grass Feeding LivestockGrass Feeding Livestock, 2006, 133(4): 54-56. doi: -
[14]
樊自立, 乔木, 徐海量, 张青青, 李和平, 张鹏, 周生斌, 卢磊. 合理开发利用地下水是新疆盐渍化耕地改良的重要途径[J]. 干旱区研究干旱区研究, 2011, 28(5): 737-743.
FAN Z L, QIAO M, XU H Q, ZHANG Q Q, LI H P, ZHANG P, ZHOU S B, LU L. Rational groundwater exploitation and utilization, an important approach of improving salinized farmland in Xinjiang[J]. Arid Zone ResearchArid Zone Research, 2011, 28(5): 737-743. -
[15]
HU Y B, SUN G Y, WANG X C. Induction characteristics and response of photosynthetic quantum conversion to changes in irradiance in mulberry plants[J]. Journal of Plant PhysiologyJournal of Plant Physiology, 2007, 164(8): 959-968. doi:
-
[16]
陈爱葵, 韩瑞宏, 李东洋, 凌连莲, 罗惠霞, 唐上剑. 植物叶片相对电导率测定方法比较研究[J]. 广东教育学院学报广东教育学院学报, 2010, 5(5): 94-97.
CHEN A K, HAN R H, LI D Y, LING L L, LUO H X, TANG S J. A comparison of two methods for electrical conductivity about plant leaves[J]. Journal of Guangdong University of EducationJournal of Guangdong University of Education, 2010, 5(5): 94-97. -
[17]
越世杰, 许长成, 邹琦, 孟庆伟. 植物组织中丙二醛测定方法的改进[J]. 植物生理学报植物生理学报, 1994, 30(3): 207-210.
YUE S J, XU C C, ZOU Q, MENG Q W. Improvements of method for measurement of malondialdehyde in plant tissues[J]. Plant Physiology JournalPlant Physiology Journal, 1994, 30(3): 207-210. -
[18]
李绍军, 龚月桦, 王俊儒, 梁宗锁. 凯时66茚三酮法测定脯氨酸含量中脯氨酸与茚三酮反应之探讨[J]. 植物生理学报植物生理学报, 2005, 41(3): 365-368.
LI S J, GONG Y H, WANG J R, LIANG Z S. Discussion on the reaction of proline and ninhydrin in the determination of proline content by ninhydrin method[J]. Plant Physiology JournalPlant Physiology Journal, 2005, 41(3): 365-368. -
[19]
白宝璋, 金锦子, 白崧, 黄丽萍. 玉米根系活力TTC测定法的改良[J]. 玉米科学玉米科学, 1994, 4(4): 44-47.
BAI B Z, JIN J Z, BAI S, HUANG L P. Improvement of the TTC method determination root activity in corn[J]. Journal of Maize SciencesJournal of Maize Sciences, 1994, 4(4): 44-47. -
[20]
张秀君, 孙钱钱, 乔双, 朱海, 孙丹, 江丕文. 菠菜叶绿素提取方法的比较研究[J]. 作物杂志作物杂志, 2011, 15(3): 66-69.
ZHANG X J, SUN Q Q, QIAO S, ZHU H, SUN D, JIANG P W. A comparative study of chlorophyll extraction methods[J]. CropsCrops, 2011, 15(3): 66-69. -
[21]
宋佳倩, 徐亮, 王悦霖, 叶协锋, 钟钏, 李均, 钟子正, 姚鹏伟, 王静, 卢剑. 外源添加麝香草酚提高烟草幼苗抵御盐胁迫机理的研究[J]. 中国烟草学报中国烟草学报, 2021, 27(2): 65-71.
SONG J Q, XU L, WANG Y L, YE X F, ZHONG C, LI J, ZHONG Z Z, YAO P W, WANG J, LU J. Study on the mechanism of exogenous thymol to improve tobacco seedling’s resistance to salinity stress[J]. Acta Tabacaria SinicaActa Tabacaria Sinica, 2021, 27(2): 65-71. -
[22]
武俊英, 刘景辉, 李倩. 盐胁迫对燕麦幼苗生长, K+、Na+吸收和光合性能的影响[J]. 西北农业学报西北农业学报, 2010, 19(2): 100-105. doi:
WU J Y, LIU J H, LI Q. Effects of Salt Stress on oat seedling growth and selective absorption of K+ and Na+ and photosynthetic characters[J]. Acta Agriculturae Boreali-occidentalis SinicaActa Agriculturae Boreali-occidentalis Sinica, 2010, 19(2): 100-105. doi: -
[23]
KINRAIDE T B. Interactions among Ca2+, Na+ and K+ in salinity toxicity: Quantitative effects. Journal of Experimental Botany, 1999, 50(338): 1495-1505.
-
[24]
刘建新, 王金成, 王瑞娟, 贾海燕. 燕麦幼苗对氯化钠和氯化钾胁迫的生理响应差异[J]. 水土保持通报水土保持通报, 2014, 34(5): 74-79.
LIU J X, WANG J C, WANG R J, JIA H Y. Differences in physiological responses of A. vena Nuda seedlings to NaCl and KCl stress[J]. Bulletin of Soil and Water ConservationBulletin of Soil and Water Conservation, 2014, 34(5): 74-79. -
[25]
惠菲, 梁启全, 於丽华, 王铁军, 彭春雪, 杨云, 耿贵. NaCl和KCl胁迫对甜菜幼苗生长的影响[J]. 中国糖料中国糖料, 2012, 3(3): 30-32. doi:
HUI F, LIANG Q Q, YU L H, WANG T J, PENG C X, YANG Y, GENG G. Influence of NaCl and KCl stress on sugarbeet seedling growth[J]. Sugar Crops of ChinaSugar Crops of China, 2012, 3(3): 30-32. doi: -
[26]
WANG H M, XIAO X R, YANG M Y, GAO Z L, ZANG J, FU X M, CHEN Y H. Effects of salt stress on antioxidant defense system in the root of Kandelia candel[J]. Botanical StudiesBotanical Studies, 2014, 55(1): 1-7. doi:
-
[27]
ESSAH P A, DAVENPORT R, TESTER M. Sodium influx and accumulation in Arabidopsis[J]. Plant PhysiologyPlant Physiology, 2003, 133(1): 307-318. doi:
-
[28]
伍国强, 李辉, 雷彩荣, 蔺丽媛, 金娟, 李善家. 添加KCl对高盐胁迫下红豆草生长及生理特性的影响[J]. 草业学报草业学报, 2019, 28(6): 45-55. doi:
WU G Q, LI H, LEI C R, LIN L Y, JIN J, LI S J. Effects of additional KCl on growth and physiological characteristics of sainfoin (Onobrychis viciaefoia) under high salt stress[J]. Acta Prataculturae SinicaActa Prataculturae Sinica, 2019, 28(6): 45-55. doi: -
[29]
于沛玉. 盐胁迫下K+对珠美海棠幼苗生理特性的影响. 天津: 天津农学院硕士学位论文, 2014.
YU P Y. Effect of potassium ion on physiological property of Malus zumi Seedling under salt stress. Master Thesis. Tianjin: Tianjin Agricultural University, 2014. -
[30]
房朋, 任丽丽, 张立涛, 高辉远. 盐胁迫对杂交酸模叶片光合活性的抑制作用[J]. 应用生态学报应用生态学报, 2008, 19(10): 2137-2142.
FANG P, REN L L, ZHANG L T, GAO H Y. Inhibition effects of salt stress on photosynthetic activity of Rumex K-1[J]. Chinese Journal of Applied EcologyChinese Journal of Applied Ecology, 2008, 19(10): 2137-2142. -
[31]
王宝山, 李德全, 赵士杰, 孟庆伟, 邹琦. 等渗NaCl和KCl胁迫对高粱幼苗生长和气体交换的影响[J]. 植物学报植物学报, 1999, 16(4): 449-453. doi:
WANG B S, LI D Q, ZHAO S J, MENG Q W, ZOU Q. Effects of iso-osmotic NaCl and KCl stress on growth and gas exchange of sorghum seedlings[J]. Chinese Bulletin of BotanyChinese Bulletin of Botany, 1999, 16(4): 449-453. doi: -
[32]
熊雪, 罗建川, 魏雨其, 周冀琼, 张英俊. 不均匀盐胁迫对紫花苜蓿生长特性的影响[J]. 中国农业科学中国农业科学, 2018, 51(11): 55-66.
XIONG X, LUO J C, WEI Y Q, ZHOU J Q, ZHANG Y J. Effects of non-uniform salt stress on growth characteristics of alfalfa[J]. Scientia Agricultura SinicaScientia Agricultura Sinica, 2018, 51(11): 55-66. -
[33]
何奇江, 李楠, 周文伟, 王波. 盐胁迫对雷竹叶绿素含量的影响[J]. 竹子学报竹子学报, 2014, 33(2): 58-62. doi:
HE Q J, LI N, ZHOU W W, WANG B. The response of chlorophyll content of Phyllostachys violascens to NaCl stress[J]. Journal of Bamboo ResearchJournal of Bamboo Research, 2014, 33(2): 58-62. doi: -
[34]
赵英, 张佳佳, 吴敏, 邓平, 朱宇林, 黄司翊. 外源钙对盐胁迫下罗汉果幼苗生理效应的影响[J]. 四川师范大学学报(自然科学版)四川师范大学学报(自然科学版), 2021, 44(4): 555-562.
ZHAO Y, ZHANG J J, WU M, DENG P, ZHU Y L, HUANG S Y. Effects of exogenous calcium on the physiological characteristics of Siraitia grosvenorii seedlings under salt stress[J]. Journal of Sichuan Normal University (Natural Science)Journal of Sichuan Normal University (Natural Science), 2021, 44(4): 555-562. -
[35]
赵可夫. 植物抗盐生理. 北京: 中国科学技术出版社, 1993.
ZHAO K F. Salt Resistance Physiology of Plants. Beijing: China Science and Technology Press, 1993. -
[36]
束胜, 郭世荣, 孙锦, 袁颖辉, 袁凌云. 盐胁迫下植物光合作用的研究进展[J]. 中国蔬菜中国蔬菜, 2012, 18(18): 58-66.
SHU S, GUO S R, SUN J, YUAN Y H, YUAN L Y. Research progress on photosynthesis under salt stress[J]. Chinese VegetableChinese Vegetable, 2012, 18(18): 58-66. -
[37]
刘美君, 隋晓青, 安沙舟. 干旱脱水对狗牙根叶片光合机构的影响[J]. 草地学报草地学报, 2018, 26(2): 441-446.
LIU M J, SUI X Q, AN S Z. The effect of dehydration on Cynodon dactylon L. leaf photosynthetic apparatus[J]. Acta Agrestia SinicaActa Agrestia Sinica, 2018, 26(2): 441-446. -
[38]
MEHREEN G, ABDUL W, DIEDRICH S, SYLVIA L. Potassium-induced decrease in cytosolic Na+ alleviates deleterious effects of salt stress on wheat (Triticum aestivum L.)[J]. Plant Biology (Stuttgart, Germany)Plant Biology (Stuttgart, Germany), 2019, 21(5): 825-831. doi:
-
[1]
-
凯时66
图 1 不同盐胁迫后紫花苜蓿根系电导率
Figure 1. Electrical conductivity of alfalfa root system after different salt stress treatments
图A同一处理不同小写字母表示NaCl和KCl间差异显著(P < 0.05);图B不同小写字母表示不同处理间差异显著(P < 0.05);下图同。
A. Lowercase letters within the same treatment indicate significant differences between NaCl and KCl at the 0.05 level; B. 200Na, 200 mmol·L−1 NaCl; 20Na, 20 mmol·L−1 NaCl; 200K, 200 mmol·L−1 KCl; 20K, 20 mmol·L−1 KCl; Different lowercase letters indicate significant differences between different treatments at the 0.05 level; this is applicable for the following figures as well.
图 2 不同盐胁迫后紫花苜蓿根系丙二醛含量
Figure 2. Malondialdehyde content of alfalfa roots after different salt stress treatments
图 3 不同盐胁迫后紫花苜蓿根系脯氨酸含量
Figure 3. Proline content of alfalfa root system after different salt stress treatments
图 5 不同胁迫后紫花苜蓿各叶绿素含量的变化
Figure 5. Changes in the chlorophyll content of alfalfa after different treatments
同一浓度不同小写字母表示NaCl和KCl间差异显著(P < 0.05)。
Lowercase letters within the same concentration indicate significant differences between NaCl and KCl at the 0.05 level.
图 6 混盐胁迫后紫花苜蓿叶绿素含量的变化
Figure 6. Changes in the chlorophyll content of alfalfa after mixed salt stress
同一指标不同小写字母表示各处理间差异显著(P<0.05)。
Different lowercase letters within the same index indicate significant differences between different treatments at the 0.05 level.
图 7 不同盐胁迫后紫花苜蓿类胡萝卜素含量的变化
Figure 7. Carotenoid content of alfalfa after different salt stress treatments
图 9 不同盐胁迫后紫花苜蓿叶片脯氨酸含量
Figure 9. Proline content of alfalfa leaves after different salt stress treatments
-