性状 Traits | 记载标准 Definition |
生育期 Whole growth period | 播种至成熟期的天数 Days from the first day after sowing to maturity |
株高 Plant height | 从植株基部至植株穗顶部的高度 Height from bottom to spike top |
主茎直径 Stem diameter | 地面往上15 cm处植株主茎茎杆宽度 Width of main stem 15 cm above the ground |
株型 Plant type | 自然生长株型 Natural growth plant type |
穗色 Spike color | 穗部颜色 The color of spike |
杆色 Stem color | 茎杆颜色 The color of stem |
籽粒色 Seed color | 籽粒颜色 The color of seed |
单株鲜重 Fresh weight per plant | 单株成熟期全株重量 Whole plant weight in maturation period |
单株粒重 Grain weight per plant | 单株籽粒自然风干后的重量 Weight of seeds per plant after natural air drying |
千粒重1000−grain weight | 随机取1000粒藜麦籽粒,自然风干后的重量 The weight of 1000 seeds after natural air drying |

Citation: ZHANG Y H, GUO Z B, LIU R X. Analysis of the relationship between agronomic traits and yield of . Pratacultural Science, 2022, 39(0): 1-11 doi:

不同藜麦品种(系)农艺性状与产量关系的研究
English
Analysis of the relationship between agronomic traits and yield of Chenopodium quinoa
-
Key words:
- Chenopodium quinoa /
- agronomic traits /
- yield /
- correlation analysis /
- principal component analysis /
- path analysis /
- cluster analysis
-
-
-
[1]
杨发荣, 黄杰, 魏玉明, 李敏权, 何学功, 郑健. 藜麦生物学特性及应用[J]. 草业科学草业科学, 2017, 34(3): 607-613. doi:
YANG F R, HUANG J, WEI Y M, LI M Q, HE X G, ZHENG J. A review of biological characteristics, applications and culture of Chenopodium quinoa[J]. Pratacultural SciencePratacultural Science, 2017, 34(3): 607-613. doi: -
[2]
肖正春, 张广伦. 藜麦及其资源开发利用[J]. 中国野生植物资源中国野生植物资源, 2017, 33(2): 62-66.
XIAO Z C, ZHANG G L. Development and utilization of Chenopodium quinoa Willd[J]. Chinese Wild Plant ResourcesChinese Wild Plant Resources, 2017, 33(2): 62-66. -
[3]
魏爱春, 杨修仕, 么杨, 刘浩, 秦培友, 赵德刚, 李怡, 任贵兴. 藜麦营养功能成分及生物活性研究进展[J]. 食品科学食品科学, 2015, 36(15): 272-276. doi:
WEI A C, YANG X S, MO Y, LIU H, QIN P Y, ZHAO D G, LI Y, REN G X. Progress in research on nutritional and functional components and bioactivity of quinoa (Chenopodium quinoa Willd. )[J]. Food ScienceFood Science, 2015, 36(15): 272-276. doi: -
[4]
刘瑞香, 郭占斌, 马迎梅, 米艳杰, 马莹. 科尔沁沙地不同品种藜麦的营养价值及青贮研究[J]. 干旱区资源与环境干旱区资源与环境, 2020, 34(12): 50-56.
LIU R X, GUO Z B, MA Y M, MI Y J, MA Y. Nutritional values of quinoa and its silage for different quinoa varieties planted in Horqin sandy land[J]. Journal of Arid Land Resources and EnvironmentJournal of Arid Land Resources and Environment, 2020, 34(12): 50-56. -
[5]
张崇玺, 贡布扎西, 旺姆. 南美藜 (Quinoa) 苗期低温冻害试验研究[J]. 西藏农业科技西藏农业科技, 1994, 16(4): 49-54.
ZHANG C X, Gongbuzhaxi, Wangmu. Experimental study on low-temperature and freezing injury of quinoa seedlings[J]. Tibet Journal of Agricultural ScienceTibet Journal of Agricultural Science, 1994, 16(4): 49-54. -
[6]
孙婧譞, 何新益, 程凯悦, 王雪, 廖振宇, 叶金铎, 李航. 藜麦啤酒的研究进展[J]. 食品研究与开发食品研究与开发, 2021, 42(16): 199-204.
SUN J X, HE X Y, CHENG K Y, WANG X, LIAO Z Y, YE J D, LI H. Research progress of quinoa beer[J]. Food Research and DevelopmentFood Research and Development, 2021, 42(16): 199-204. -
[7]
袁加红, 刘正杰, 吴慧琳, 毛自朝, 林春. 111份藜麦种质资源农艺性状分析[J]. 云南农业大学学报 (自然科学)云南农业大学学报 (自然科学), 2020, 35(4): 572-580,650.
YUAN J H, LIU Z J, WU H L, MAO Z Z, LIN C. The analysis of the main agronomic traits of 111 quinoa germplasm resources[J]. Journal of Yunnan Agricultural University (Natural Science)Journal of Yunnan Agricultural University (Natural Science), 2020, 35(4): 572-580,650. -
[8]
FUNK J L, LARSON J E, RICKS-ODDIE J. Plant traits are differentially linked to performance in a semiarid ecosystem[J]. EcologyEcology, 2021, 102(5): e03318-.
-
[9]
CASTILLO R, Fernández J A, Gómez-Gómez L. Implications of carotenoid biosynthetic genes in apocarotenoid formation during the stigma development of Crocus sativus and its closer relatives[J]. Plant PhysiologyPlant Physiology, 2005, 139(2): 674-689. doi:
-
[10]
宋娇, 姚有华, 刘洋, 迟德钊, 王越. 6个藜麦品种 (系) 农艺性状的主成分分析[J]. 青海大学学报青海大学学报, 2017, 35(6): 6-10.
SONG J, YAO Y H, LIU Y, CHI D Z, WANG Y. Principal component analysis of agronomic traits of six quinoa varieties (or lines)[J]. Journal of Qinghai UniversityJournal of Qinghai University, 2017, 35(6): 6-10. -
[11]
张亚萍, 王致和, 张秀华, 马金慧, 钱昊旸, 张英英, 张肖凌. 14个藜麦品种 (系) 在祁连山区的农艺性状表现及其与产量的关系分析[J]. 山东农业科学山东农业科学, 2021, 53(8): 17-21.
ZHANG Y P, WANG Z H, ZHANG X H, MA J H, QIAN H Y, ZHANG Y Y, ZHANG X L. Performance of agronomic characters and their correlations with yield of 14 quinoa materials in the Qilian mountains[J]. Shandong Agricultural SciencesShandong Agricultural Sciences, 2021, 53(8): 17-21. -
[12]
黄杰, 刘文瑜, 吕玮, 魏玉明, 金茜, 杨发荣. 38份藜麦种质资源农艺性状与产量的关系分析[J]. 甘肃农业科技甘肃农业科技, 2018, (12): 72-75. doi:
HUANG J, LIU W Y, LYU W, WEI Y M, JIN Q, YANG F R. Relationship analysis between agronomic traits and yield of 38 quinoa cultivars[J]. Gansu Agricultural Science and TechnologyGansu Agricultural Science and Technology, 2018, (12): 72-75. doi: -
[13]
王艳青, 李春花, 卢文洁, 孙道旺, 尹桂芳, 陆平, 王莉花. 135份国外藜麦种质主要农艺性状的遗传多样性分析[J]. 植物遗传资源学报植物遗传资源学报, 2018, 19(5): 887-894.
WANG Y Q, LI C H, LU W J, SUN D W, YIN G F, LU P, WANG L H. Genetic diversity analysis of major agronomic traits in 135 foreign quinoa germplasm accessions[J]. Journal of Plant Genetic ResourcesJournal of Plant Genetic Resources, 2018, 19(5): 887-894. -
[14]
BAKHTIAR A, SULIANTORO H, NINGSI R H, PITIPALDI K. Relationship of quality management system standards to industrial property rights in Indonesia using Spearman Correlation Analysis Method. //International Conference on Internet of People. Earth and Environmental Science, 2021.
-
[15]
李小胜, 陈珍珍. 如何正确应用SPSS软件做主成分分析. 统计研究, 2010, 27 (8): 105-108.
LI X S, CHEN Z Z, Correctly using SPSS software for principal components analysis. Statistical Research, 2010, 27 (8): 105-108. -
[16]
王骏, 王士同, 邓赵红. 聚类分析研究中的若干问题[J]. 控制与决策控制与决策, 2012, 27(3): 321-328.
WANG J, WANG S T, DENG Z H. Survey on challenges in clustering analysis research[J]. Control and DecisionControl and Decision, 2012, 27(3): 321-328. -
[17]
王艳青, 李勇军, 李春花, 卢文洁, 孙道旺, 尹桂芳, 洪波, 王莉花. 藜麦主要农艺性状与单株产量的相关和通径分析[J]. 作物杂志作物杂志, 2019, (6): 156-161.
WANG Y Q, LI Y J, LI C H, LU W J, SUN D W, YIN G F, HONG B, WANG L H. Correlation and path analysis of the main agronomic traits and yield per plant of quinoa[J]. CropsCrops, 2019, (6): 156-161. -
[18]
杜玉洁. 基于回归的通径及决策分析模型应用研究. 杨凌: 西北农林科技大学硕士学位论文, 2021.
DU Y J. Research on path and decision analysis model application based on regression analysis. Master Thesis. Yangling: Northwest A & F University, 2021. -
[19]
袁志发, 周静芋, 郭满才, 雷雪芹, 解小莉. 决策系数——通径分析中的决策指标[J]. 西北农林科技大学学报 (自然科学版)西北农林科技大学学报 (自然科学版), 2001, 29(5): 131-133.
YUAN Z F, ZHOU J Y, GUO M C, LEI X Q, XIE X L. Decision coefficient-the decision index of path analysis[J]. Journal of Northwest A & F University (Natural Science Edition)Journal of Northwest A & F University (Natural Science Edition), 2001, 29(5): 131-133. -
[20]
常巍, 张则宇, 黄薇, 周燕飞, 高雪芹. 无芒雀麦农艺性状与产量形成关系的多重分析[J]. 中国草地学报中国草地学报, 2021, 43(4): 13-21.
CHANG W, ZHANG Z Y, HUANG W, ZHOU Y F, GAO X Q. Multiple analysis on the relationship between agronomic traits and yield formation of Bromus inermis[J]. Chinese Journal of GrasslandChinese Journal of Grassland, 2021, 43(4): 13-21. -
[21]
李京璟, 马庆华, 陈新, 张日清, 王贵禧. 平榛种质资源坚果农艺性状鉴定与评价研究[J]. 植物遗传资源学报植物遗传资源学报, 2016, 17(3): 483-490.
LI J J, MA Q H, CHEN X, ZHANG R Q, WANG G X. Identification and evaluation of agronomic traits for Corylus heterophylla Fisch. germplasm resources[J]. Journal of Plant Genetic ResourcesJournal of Plant Genetic Resources, 2016, 17(3): 483-490. -
[22]
齐天明, 李志坚, 秦培友, 任贵兴, 周帮伟. 藜麦栽培技术研究与应用展望[J]. 中国农业科技导报中国农业科技导报, 2022, 24(3): 157-165.
QI T M, LI Z J, QIN P Y, REN G X, ZHOU B W. Research and application prospect of quinoa cultivation technology[J]. Journal of Agricultural Science and TechnologyJournal of Agricultural Science and Technology, 2022, 24(3): 157-165. -
[23]
郝峰, 徐柱, 李平, 秦晓冉, 马玉宝, 闫伟红. 无芒雀麦农艺性状遗传多样性研究[J]. 草业科学草业科学, 2011, 28(5): 769-776. doi:
HAO F, XU Z, LI P, QIN X R, MA Y B, YAN W H. Genetic diversity of Bromus inermis on agronomic traits[J]. Pratacultural SciencePratacultural Science, 2011, 28(5): 769-776. doi: -
[24]
陈翠萍, 闫殿海, 左皓南, 高森, 张书苗, 刘洋. 青海47份藜麦种质资源农艺性状分析[J]. 青海大学学报青海大学学报, 2021, 39(4): 18-25.
CHEN C P, YAN D H, ZUO H N, GAO S, ZHANG S M, LIU Y. Analysis on the agronomic characters of 47 samples of Chenopodium quinoa Willd. germplasm resources in Qinghai province[J]. Journal of Qinghai UniversityJournal of Qinghai University, 2021, 39(4): 18-25. -
[25]
张丽英, 张正斌, 徐萍, 卫云宗, 刘新江. 黄淮小麦农艺性状进化及对产量性状调控机理的分析[J]. 中国农业科学中国农业科学, 2014, 47(5): 1013-1028. doi:
ZHANG L Y, ZHANG Z B, XU P, WEI Y Z, LIU X J. Evolution of agronomic traits of wheat and analysis of the mechanism of agronomic traits controlling the yield traits in the Huang-Hai plain[J]. Scientia Agricultura SinicaScientia Agricultura Sinica, 2014, 47(5): 1013-1028. doi:
-
[1]
-
凯时66
表 1 藜麦农艺性状记载标准
Table 1. Guidelines for measuring the agronomic traits of quinoa
下载: 导出CSV
表 2 藜麦描述项目及鉴定标准
Table 2. The main morphological characteristics and their categories for quinoa
序号 Code 性状 Traits 标准 Category 1 株型 Plant type 1=相对紧凑;2=较紧凑;3=紧凑;4=分散;5=较分散;6=相对分散
1=Tightest;2=Tighter;3=Tight;4=Dispersive;5=More dispersive;6=Most dispersive2 杆色 Stem color 1=黄;2=橘红;3=红;4=绿;5=紫红
1=Yellow;2=Reddish orange;3=Red;4=Green;5=Purplish red3 穗色 Spike color 1=白;2=黄;3=橘红;4=红;5=青;6=绿;7=紫红;8=紫
1=White;2=Yellow;3=Reddish orange;4=Red;5=Cyan;6=Green;7=Purplish red;8=Purple4 籽粒色 Seed color 1=白;2=橘红;3=紫红;4=黑
1=White;2=Reddish orange;3=Purplish red;4=Black下载: 导出CSV
表 3 不同藜麦品种(系)农艺性状表现
Table 3. Representative agronomic traits of quinoa cultivars
品种
Cultivar生育期
WGP/d株高
PH/cm主茎直径
SD/mm单株鲜重
FWPP/g单株粒重
GWPP/g千粒重
1000−GW/g黑藜 Heili 173 212.750 ± 4.200cdB 22.768 ± 1.420cAB 1 895.000 ± 313.670aA 123.572 ± 22.330abAB 2.139 ± 0.120bAB A4 173 179.600 ± 7.850eC 20.084 ± 1.550cdB 883.000 ± 149.680deBCD 121.615 ± 22.930abAB 2.208 ± 0.040bAB SC-1 170 210.900 ± 6.170cdB 20.481 ± 1.270cdB 1 163.000 ± 244.580bcdABCD 140.320 ± 53.550abAB 2.068 ± 0.150bcBC F2-3 168 193.600 ± 7.610deBC 17.968 ± 1.560dBC 490.000 ± 60.060eD 162.542 ± 17.400aA 2.208 ± 0.110bAB F1 173 197.900 ± 6.310cdeBC 19.396 ± 1.040cdB 414.500 ± 85.110eD 66.190 ± 12.770bcAB 1.704 ± 0.130cdBCDE F2 169 200.700 ± 7.410cdeBC 20.548 ± 0.970cdB 811.000 ± 71.430deCD 128.864 ± 22.170abAB 2.055 ± 0.160bcBC F3 167 210.100 ± 4.330cdB 23.276 ± 1.310abcAB 980.800 ± 105.410cdeBCD 97.028 ± 9.340abcAB 1.733 ± 0.050cdBCDE ZK1 166 217.400 ± 7.290cB 22.974 ± 1.510bcAB 1 645.000 ± 223.420abAB 77.520 ± 23.340bcAB 1.697 ± 0.080cdBCDE ZK2 167 207.300 ± 4.060cdBC 23.433 ± 1.110abcAB 1 532.100 ± 293.240abcABC 42.849 ± 15.770cB 1.475 ± 0.130dDE 雪藜 Xueli 174 203.800 ± 6.130cdBC 22.625 ± 0.940cAB 1 195.000 ± 148.350bcdABCD 162.131 ± 38.740aA 2.630 ± 0.100aA 格藜 Geli 175 135.900 ± 3.430fD 14.176 ± 1.460eC 461.800 ± 68.210eD 100.283 ± 18.990abcAB 2.577 ± 0.210aA 台紫红 Tai zi hong 173 293.500 ± 10.440aA 27.126 ± 1.190aA 1 477.000 ± 293.530abcABC 40.726 ± 3.880cB 1.374 ± 0.180dE 台黄红 Tai huang hong 173 271.600 ± 10.560bA 26.862 ± 1.520abA 1 087.000 ± 124.820bcdBCD 42.264 ± 11.970cB 1.559 ± 0.080dCDE C3-1 175 191.700 ± 4.260deBC 18.066 ± 0.810dBC 488.700 ± 46.940eD 71.335 ± 7.000bcAB 1.985 ± 0.080bcBCD 同列数据后大、小写字母分别表示品种(系)间差异达极显著水平(P < 0.01)和显著水平(P < 0.05)。下同。
Note: Capital and lowercase letters within the same row indicate a very significant difference (P < 0.01) or a significant difference (P < 0.05), respectively, between the cultivars (strains). WGP: whole growth period; PH: plant height; SD: stem diameter; FWPP: fresh weight per plant; GWPP: grain weight per plant; 1000-GW: 1000-grain weight. This is applicable for the following tables and figures as well.下载: 导出CSV
表 4 藜麦各农艺性状的描述性分析
Table 4. Descriptive statistical analysis of agronomic traits of quinoa
性状
Traits平均值
Mean标准差
Standarddeviation最大值
Maximum最小值
Minimum极差
Range变异系数
Coefficient of variation/%偏度
Skewness峰度
Kurtosis生育期 WGP 171.14 3.18 175 166 9 1.86 −0.377 −1.411 株高 PH 209.05 37.33 331 120 157.6 17.86 0.693 1.087 主茎直径 SD 21.42 3.49 27.13 14.18 12.95 16.31 0.000 0.170 单株鲜重 FWPP 1 037.42 479.11 1895 414.5 1 480.5 46.18 1.382 1.675 单株粒重 GWPP 98.37 42.79 162.54 40.73 121.81 43.50 1.805 4.970 千粒重 1000-GW 1.89 0.34 2.58 1.37 1.21 18.16 0.487 1.215 下载: 导出CSV
表 5 藜麦表观性状表现
Table 5. Representative epigenetic traits of quinoa cultivars
品种
Cultivar株型
Plant type杆色
Stem color穗色
Spike color籽粒颜色
Seed colorF2-3 紧凑 Tight 红 Red 紫红 Purplish red 白 White 雪藜 Xueli 较分散 More dispersive 绿 Green 白 White 白 White SC-1 紧凑 Tight 绿 Green 绿 Green 白 White F2 紧凑 Tight 紫红 Purplish red 紫红 Purplish red 白 White 黑藜 Heili 紧凑 Tight 绿 Green 绿 Green 黑 Black A4 紧凑 Tight 黄 Yellow 黄 Yellow 白 White 格藜 Geli 紧凑 Tight 绿 Green 黄 Yellow 白 White F3 紧凑 Tight 绿 Green 黄 Yellow 白 White ZK1 分散 Dispersive 绿 Green 青 Cyan 白 White C3-1 分散 Dispersive 绿 Green 黄 Yellow 白 White F1 较紧凑 Tighter 红 Red 红 Red 白 White ZK2 分散 Dispersive 绿 Green 青 Cyan 白 White 台黄红 Tai huang hong 紧凑 Tight 橘红 Reddish orange 橘红 Reddish orange 橘红 Reddish orange 台紫红 Tai zi hong 紧凑 Tight 紫红 Purplish red 紫 Purple 紫红 Purplish red 下载: 导出CSV
表 6 藜麦各性状的相关性分析
Table 6. Correlation coefficients between quinoa agronomic traits
性状
Traits生育期
GP株高
PH主茎直径
SD单株鲜重
FWPP千粒重
1000-GW单株粒重
GWPP生育期 WGP 1.000 株高 PH −0.076 1.000 主茎直径 SD −0.140 0.670** 1.000 单株鲜重 FWPP −0.185* 0.411** 0.596** 1.000 千粒重1000-GW 0.268** −0.356** −0.221** −0.088 1.000 单株粒重 GWPP −0.019 −0.105 0.054 0.259** 0.489** 1.000 “*”表示在P < 0.05水平(双侧)上相关性显著;“**”表示在P < 0.01水平(双侧)上相关性显著。
“*” represents significant correlation P < 0.05 (2-tailed), “**” represents extremely significant correlation P < 0.01 (2-tailed).下载: 导出CSV
表 7 藜麦农艺性状的主成分分析
Table 7. Principal component analysis of quinoa agronomic traits
性状
Traits因子1
Principal
component 1因子2
Principal
component 2因子3
Principal
component 3生育期 WGP −0.342 0.116 0.903 株高 PH 0.825 −0.046 0.305 主茎直径 SD 0.862 0.212 0.176 单株鲜重 FWPP 0.714 0.457 −0.069 千粒重 1000-GW −0.513 0.712 0.118 单株粒重 GWPP −0.076 0.878 −0.205 特征值 Eigenvalue 2.318 1.548 1.001 贡献率
Contribution rate/%38.638 25.793 16.676 累计贡献率
Cumulative
contribution rate/%38.638 64.431 81.107 下载: 导出CSV
表 8 藜麦各农艺性状得分矩阵
Table 8. Score matrix of quinoa agronomic traits
性状
Traits主成分 Principal component T1 T2 T3 生育期(X1) WGP −0.148 0.075 0.903 株高(X2) PH 0.356 −0.029 0.305 主茎直径(X3) SD 0.372 0.137 0.176 单株鲜重(X4) FWPP 0.308 0.295 −0.069 千粒重(X5) 1000-GW −0.221 0.460 0.118 单株粒重(X6) GWPP −0.033 0.567 −0.205 下载: 导出CSV
表 9 藜麦单株粒重与5个农艺性状的多元线性回归分析系数
Table 9. Coefficients of multivariate linear regression analysis for yield per plant and five agronomic traits of quinoa
模型
Model未标准化系数 Non-standardized coefficient 标准化系数
Standardized coefficientt Sig. B 标准误差 Standard error 1 常量 Constant 413.149 334.178 − 1.236 0.219 生育期(X1) WGP −2.871 1.979 −0.107 −1.451 0.149 株高(X2) PH −0.116 0.196 −0.059 −0.594 0.554 主茎直径(X3) SD 0.243 1.717 0.015 0.141 0.888 单株鲜重(X4) FWPP 0.034 0.010 0.300 3.400 0.001 千粒重(X5) 1000−GW 81.868 12.116 0.527 6.757 0.000 下载: 导出CSV
表 10 藜麦单株粒重与5个农艺性状的多元线性逐步回归模型概述输出结果
Table 10. Summary of output results of multivariate linear stepwise regression models for yield per plant and five agronomic traits of quinoa
模型
ModelR R2 调整R2
Adjust R2标准估计的误差
Standard estimate error1 0.489a 0.240 0.234 71.968 15 2 0.576b 0.331 0.322 67.733 68 a预测变量包括常量、千粒重;b预测变量包括常量、千粒重、单株鲜重。
a Predictors including constant, 1000-grain weight; b Predictors including constant, 1000-grain weight, and fresh weight per plant.下载: 导出CSV
表 11 藜麦单株粒重与5个农艺性状的多元线性逐步回归分析系数
Table 11. Multiple linear stepwise regression analysis coefficient for yield per plant and five agronomic traits of quinoa
模型
Model未标准化系数 Non-standardized coefficient 标准化系数
Standardized coefficientt 显著性Sig. B 标准误差 Standard error 1 常量 Constant −50.469 23.378 − −2.159 0.033 千粒重(X5) 1000-GW 76.018 11.528 0.489 6.594 0.000 2 常量 Constant −94.531 24.236 − −3.900 0.000 千粒重(X5) 1000-GW 80.180 10.893 0.516 7.361 0.000 单株鲜重(X4) FWPP 0.035 0.008 0.304 4.335 0.000 下载: 导出CSV
表 12 藜麦单株粒重与农艺性状的通径分析
Table 12. Agronomic path analysis for yield of quinoa
性状
Traits相关系数
Correlation
coefficient直接通径系数
Direct path
coefficient间接通径系数 Indirect path coefficient 决策系数
Decision
coefficientX1 X2 X3 X4 X5 合计 Total 生育期(X1) WGP −0.019 −0.107 − 0.005 −0.002 −0.056 0.141 0.088 −0.030 株高(X2) PH −0.105 −0.059 0.008 − 0.010 0.123 −0.187 −0.046 0.002 主茎直径(X3) SD 0.054 0.015 0.015 −0.040 − 0.180 −0.116 0.039 0.001 单株鲜重(X4) FWPP 0.259 0.300 0.020 −0.024 0.009 − −0.046 −0.041 −0.115 千粒重(X5) 1000-GW 0.489 0.527 −0.029 0.020 −0.003 −0.026 − −0.038 −0.318 下载: 导出CSV
-