基因 Gene | 上游引物 Forward primer (5′-3′) | 下游引物 Reverse primer (5′-3′) | 片段大小 Clip size/bp | 基因编号 Gene ID |
18s rRNA | CTACGTCCCTGCCCTTTGTACA | ACACTTCACCGGACCATTCAA | 65 | AK059783 |
GAPDH | CCATCACTGCCACACAGAAAAC | AGGAACACGGAAGGACATACCAG | 170 | X07156.1 |
Actin | TGCTCAGTGGAGGGTCTACCAT | CAGGTGGTGCAATCACTTTAAT | 108 | PgACT |
ACTB | CTGGAATGGTCAAGGCTGGT | TCCTTCTGTCCCATCCCTACC | 112 | XM_008658343.4 |
EF-1α | TGGGCCTACTGGTCTTACTACTGA | ACATACCCACGCTTCAGATCCT | 135 | NM_001112117.1 |
UBQ | CAGCAGCGGCTCATCTT | GCTTCTTGGGCTTGGTGTA | 154 | AK061988 |
TUB | GCTGACCACACCTAGCTTTGG | AGGGAACCTTAGGCAGCATGT | 82 | AK072502 |
CYP | TGTAGACCACGTCCATTCCA | GCTGGGAAAGATACAAACGGA | 115 | XM_037608623.1 |

Citation: LI S T, LI Y, ZHANG L, CHEN S Q, HAN X L, ZHANG J, SU D W, LUO H L, ZHOU J. Screening of reference genes of based on real-time fluorescence quantitative PCR. Pratacultural Science, 2022, 39(5): 1-15 doi:

基于实时荧光定量PCR筛选巨菌草内参基因
English
Screening of reference genes of Pennisetum giganteum based on real-time fluorescence quantitative PCR
-
-
-
[1]
HUGGETT J, DHEDA K, BUSTIN S, ZUMLA A. Real-time RT-PCR normalisation, strategies and considerations[J]. Genes and ImmunityGenes and Immunity, 2005, 6(4): 279-284.
-
[2]
GACHON C, MINGAM A, CHARRIER B. Real-time PCR: What relevance to plant studies[J]. Journal of Experimental BotanyJournal of Experimental Botany, 2004, 55(): 1445-1454. doi:
-
[3]
袁伟, 万红建, 杨悦俭. 植物实时荧光定量PCR内参基因的特点及选择[J]. 植物学报植物学报, 2012, 47(4): 427-436.
YUAN W, WAN H J, YANG Y J. Characterization and selection of reference genes for real-time quantitative RT-PCR of plants[J]. Chinese Bulletin of BotanyChinese Bulletin of Botany, 2012, 47(4): 427-436. -
[4]
吴建阳, 何冰, 杜玉洁, 李伟才, 魏永赞. 利用geNorm、NormFinder和BestKeeper软件进行内参基因稳定性分析的方法[J]. 现代农业科技现代农业科技, 2017, (5): 278-281. doi:
WU J Y, HE B, DU Y J, LI W C, WEI Y Z. Analysis method of systematically evaluating stability of reference genes using geNorm, NormFinder and BestKeeper[J]. Modern Agricultural Science and TechnologyModern Agricultural Science and Technology, 2017, (5): 278-281. doi: -
[5]
PFAFFL M W, TICHOPAD A, PRGOMET C, NEUVIANS T P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations[J]. Biotechnology LettersBiotechnology Letters, 2004, 26(6): 509-515. doi:
-
[6]
XU H, BAO J D, DAI J S, LI Y Q, ZHU Y. Genome-wide identification of new reference genes for qRT-PCR normalization under high temperature stress in rice endosperm[J]. PLoS OnePLoS One, 2015, 10(11): 1-13.
-
[7]
张兰, 檀鹏辉, 滕珂, 闫蒙举, 何春燕, 甘露, 尹淑霞. 草地早熟禾荧光定量PCR分析中内参基因的筛选[J]. 草业学报草业学报, 2017, 26(3): 75-81. doi:
ZHANG L, TAN P H, TENG K, YAN M J, HE C Y, GAN L, YIN S X. Screening of reference genes for real-time fluorescence quantitative PCR in Kentucky bluegrass[J]. Acta Prataculturae SinicaActa Prataculturae Sinica, 2017, 26(3): 75-81. doi: -
[8]
LONG X Y, WANG J R, OUELLET T, ROCHELEAU H, WEI Y M, PU Z E, JIANG Q T, LAN X J, ZHENG Y L. Genome-wide identification and evaluation of novel internal control genes for Q-PCR based transcript normalization in wheat[J]. Plant Molecular BiologyPlant Molecular Biology, 2010, 74(3): 307-311. doi:
-
[9]
王军娟, 陶飞, 安菲, 徐向明, 胡小平. 温度与条锈病菌双胁迫下小麦内参基因的选择[J]. 植物病理学报植物病理学报, 2014, 44(5): 497-503.
WANG J J, TAO F, AN F, XU X M, HU X P. Selection of reference genes in wheat stressed by temperature and Puccinia striiformis f. sp. tritici[J]. Acta Phytopathologica SinicaActa Phytopathologica Sinica, 2014, 44(5): 497-503. -
[10]
PAOLACCI A R, TANZARELLA O A, PORCEDDU E, CIAFFI M. Identification and validation of reference genes for quantitative RT-PCR normalization in wheat[J]. BMC Molecular BiologyBMC Molecular Biology, 2009, 10(11): 1-27.
-
[11]
马小英, 贾方兴, 赵颖岚, 赵杰才. 干旱和盐胁迫中大麦实时定量PCR内参基因的筛选[J]. 分子植物育种分子植物育种, 2016, 14(11): 3093-3101.
MA X Y, JIA F X, ZHAO Y L, ZHAO J C. Reference genes screening for quantitative real-time PCR in barley under drought and salt stress[J]. Molecular Plant BreedingMolecular Plant Breeding, 2016, 14(11): 3093-3101. -
[12]
严海东, 蒋晓梅, 张新全, 黄琳凯. 非生物胁迫下多年生黑麦草qRT-PCR分析中内参基因的选择[J]. 农业生物技术学报农业生物技术学报, 2014, 22(12): 1494-1501. doi:
YAN H D, JIANG X M, ZHANG X Q, HUANG L K. Reference genes for qRT-PCR in perennial ryegrass (Lolium perenne L.) under various abiotic stresses[J]. Journal of Agricultural BiotechnologyJournal of Agricultural Biotechnology, 2014, 22(12): 1494-1501. doi: -
[13]
魏毅东, 陈玉, 郭海萍, 谢华安, 张建福, 王宗华. 水稻缺素胁迫下实时荧光定量RT-PCR的内参基因的选择[J]. 农业生物技术学报农业生物技术学报, 2013, 21(11): 1302-1312. doi:
WEI Y D, CHEN Y, GUO H P, XIE H A, ZHANG J F, WANG Z H. Selection of reference genes for real-time quantitative RT-PCR in rice (Oryza sativa L. ssp. japonica) under nutrient deficiency[J]. Journal of Agricultural BiotechnologyJournal of Agricultural Biotechnology, 2013, 21(11): 1302-1312. doi: -
[14]
JAIN M, NIJHAWAN A, TYAGI A K, KHURANA J P. Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR[J]. Biochemical and Biophysical Research CommunicationsBiochemical and Biophysical Research Communications, 2006, 345(2): 646-651. doi:
-
[15]
姜婷, 苏乔, 安利佳. 多重胁迫下玉米实时定量PCR内参基因的筛选与验证[J]. 植物生理学报植物生理学报, 2015, 51(9): 1457-1464.
JIANG T, SU Q, AN L J. Screening and validation of reference genes of qPCR in maize under multiple stresses[J]. Plant Physiology JournalPlant Physiology Journal, 2015, 51(9): 1457-1464. -
[16]
MANOLI A, STURARO A, TREVISAN S, QUAGGIOTTI S, NONIS A. Evaluation of candidate reference genes for qPCR in maize[J]. Journal of Plant PhysiologyJournal of Plant Physiology, 2012, 169(8): 807-815. doi:
-
[17]
阙友雄, 许莉萍, 徐景升, 张积森, 张木清, 陈如凯. 甘蔗基因表达定量PCR分析中内参基因的选择[J]. 热带作物学报热带作物学报, 2009, 30(3): 274-278. doi:
QUE Y X, XU L P, XU J S, ZHANG J S, ZHANG M Q, CHEN R K. Selection of control genes in real-time qPCR analysis of gene expression in sugarcane[J]. Chinese Journal of Tropical CropsChinese Journal of Tropical Crops, 2009, 30(3): 274-278. doi: -
[18]
郑丽洁, 林军, 黄先忠. 小拟南芥实时荧光定量PCR (qRT-PCR)内参基因的筛选[J]. 基因组学与应用生物学基因组学与应用生物学, 2017, 36(2): 774-783.
ZHENG L J, LIN J, HUANG X Z. Screening of reference genes of quantitative real-time PCR (qRT-PCR) in Arabidopsis pumila[J]. Genomics and Applied BiologyGenomics and Applied Biology, 2017, 36(2): 774-783. -
[19]
HONG S M, BAHN S C, LYU A, JUNG H S, AHN J H. Identification and testing of superior reference genes for a starting pool of transcript normalization in Arabidopsis[J]. Plant and Cell PhysiologyPlant and Cell Physiology, 2010, 51(10): 1694-1706. doi:
-
[20]
胡宁宁, 郭慧琴, 李西良, 孔令琪, 武自念, 张继泽, 常春, 万东莉, 臧辉, 任卫波. 羊草不同组织实时定量PCR内参基因的筛选[J]. 草业科学草业科学, 2017, 34(7): 1434-1441. doi:
HU N N, GUO H Q, LI X L, KONG L Q, WU Z N, ZHANG J Z, CHANG C, WAN D L, ZANG H, REN W B. Selection of reference genes for quantitative real-time PCR of Leymus chinensis in different tissues[J]. Pratacultural SciencePratacultural Science, 2017, 34(7): 1434-1441. doi: -
[21]
武志娟, 王照兰, 韩冰, 焦志军, 赵鸿彬. 大针茅干旱胁迫下最佳内参基因组合的筛选及验证[J]. 中国草地学报中国草地学报, 2016, 38(4): 8-12.
WU Z J, WANG Z L, HAN B, JIAO Z J, ZHAO H B. Screening and verification of the best combination of reference genes of Stipa grandis under drought stress[J]. Chinese Journal of GrasslandChinese Journal of Grassland, 2016, 38(4): 8-12. -
[22]
周晶, 林兴生, 林辉, 林冬梅, 阳伏林, 林占熺. 菌草研究与应用进展[J]. 福建农林大学学报(自然科学版)福建农林大学学报(自然科学版), 2020, 49(2): 145-152.
ZHOU J, LIN X S, LIN H, LIN D M, YANG F L, LIN Z X. Advances on Juncao research and application[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition)Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2020, 49(2): 145-152. -
[23]
ZHOU J, CHEN S Q, SHI W J, DAVID-SCHWARTZ R, LI S T, YANG F L, LIN Z X. Transcriptome profiling reveals the effects of drought tolerance in Giant Juncao[J]. BMC Plant BiologyBMC Plant Biology, 2021, 21(1): 1-20. doi:
-
[24]
周晶, 陈思齐, 史文娇, 阳伏林, 林辉, 林占熺. 巨菌草幼叶及根转录组功能基因测序及分析[J]. 草业学报草业学报, 2021, 30(2): 143-155. doi:
ZHOU J, CHEN S Q, SHI W J, YANG F L, LIN H, LIN Z X. Transcriptome analyses of functional genes in young leaves and roots of Giant Juncao[J]. Acta Prataculturae SinicaActa Prataculturae Sinica, 2021, 30(2): 143-155. doi: -
[25]
潘羿壅. 巨菌草生长生理特性对盐碱混合胁迫的响应机制研究. 呼和浩特: 内蒙古农业大学硕士学位论文, 2018.
PAN Y Y. Study on response mechnisms of Pennisetum giganteum z. x. lin growth and physiological properties to salt-alkali mixed stress. Master Thesis. Hohhot: Inner Mongolia Agricultural University, 2018. -
[26]
朱海生, 陈敏氡, 温庆放, 蓝新隆, 李永平, 王彬, 张前荣, 吴卫东. 丝瓜18S rRNA基因克隆及其作为内参基因的应用[J]. 核农学报核农学报, 2016, 30(1): 35-41. doi:
ZHU H S, CHEN M D, WEN Q F, LAN X L, LI Y P, WANG B, ZHANG Q R, WU W D. Cloning of 18S rRNA gene from Luffa cylindrical and its application as an internal standard[J]. Journal of Nuclear Agricultural SciencesJournal of Nuclear Agricultural Sciences, 2016, 30(1): 35-41. doi: -
[27]
YEAP W C, LOO J M, WONG Y C, KULAVEERASINGAM H. Evaluation of suitable reference genes for qRT-PCR gene expression normalization in reproductive, vegetative tissues and during fruit development in oil palm[J]. Plant Cell Tissue and Organ CulturePlant Cell Tissue and Organ Culture, 2014, 116(1): 55-66. doi:
-
[28]
LOSSOS I S, CZERWINSKI D K, WECHSER M A, LEVY R. Optimization of quantitative real-time RT-PCR parameters for the study of lymphoid malignancies[J]. LeukemiaLeukemia, 2003, 17(4): 789-795. doi:
-
[29]
OHDAN T, FRANCISCO J P B, SAWADA T, HIROSE T, TERAO T, SATOH H, NAKAMURA Y. Expression profiling of genes involved in starch synthesis in sink and source organs of rice[J]. Journal of Experimental BotanyJournal of Experimental Botany, 2005, 56(): 3229-3244. doi:
-
[30]
HONG S Y, SEO P J, YANG M S, XIANG F N, PARK C M. Exploring valid reference genes for gene expression studies in Brachypodium distachyon by real-time PCR[J]. BMC Plant BiologyBMC Plant Biology, 2008, 8(): 1-11.
-
[31]
曾文韬, 柴春月, 窦道龙. 适用于大豆实时荧光定量PCR分析的内参基因的筛选和验证[J]. 南京农业大学学报南京农业大学学报, 2015, 38(5): 787-795. doi:
ZENG W T, CHAI C Y, DOU D L. Selection and validation of reference genes for quantitative RT-PCR analysis in soybean[J]. Journal of Nanjing Agricultural UniversityJournal of Nanjing Agricultural University, 2015, 38(5): 787-795. doi: -
[32]
杨倩, 杨子平, 周娅丽, 陈东泉, 刘恒. 澳洲坚果实时荧光定量PCR分析中内参基因的筛选[J]. 热带作物学报热带作物学报, 2020, 41(8): 1505-1512. doi:
YANG Q, YANG Z P, ZHOU Y L, CHEN D Q, LIU H. Screening of stable reference genes for qRT-PCR analysis in Macadamia integrifolia[J]. Chinese Journal of Tropical CropsChinese Journal of Tropical Crops, 2020, 41(8): 1505-1512. doi: -
[33]
SANTELLA L, CHUN J T. Actin, more than just a housekeeping protein at the scene of fertilization[J]. Science China Life SciencesScience China Life Sciences, 2011, 54(8): 733-743. doi:
-
[34]
苏晓娟, 樊保国, 袁丽钗, 崔秀娜, 卢善发. 实时荧光定量PCR分析中毛果杨内参基因的筛选和验证[J]. 植物学报植物学报, 2013, 48(5): 507-518.
SU X J, FAN B G, YUAN L C, CUI X N, LU S F. Selection and validation of reference genes for quantitative RT-PCR analysis of gene expression in Populus trichocarpa[J]. Chinese Bulletin of BotanyChinese Bulletin of Botany, 2013, 48(5): 507-518. -
[35]
李冉, 李建彩, 周国鑫, 娄永根. 水稻虫害诱导相关基因实时定量PCR中内参基因的选择[J]. 植物学报植物学报, 2013, 48(2): 184-191. doi:
LI R, LI J C, ZHOU G X, LOU Y G. Validation of rice candidate reference genes for herbivore-induced quantitative real-time PCR analysis[J]. Chinese Bulletin of BotanyChinese Bulletin of Botany, 2013, 48(2): 184-191. doi: -
[36]
陈双双, 齐香玉, 冯景, 陈慧杰, 王华娣, 秦紫艺, 邓衍明. 铝处理下绣球实时荧光定量PCR内参基因筛选及验证[J]. 华北农学报华北农学报, 2021, 36(2): 9-18. doi:
CHEN S S, QI X Y, FENG J, CHEN H J, WANG H D, QIN Z Y, DENG Y M. Selection and validation of reference genes for qRT-PCR gene expression analysis in Hydrangea macrophylla under aluminum treatment[J]. Acta Agriculturae Boreali-SinicaActa Agriculturae Boreali-Sinica, 2021, 36(2): 9-18. doi: -
[37]
MALLONA I, LISCHEWSKI S, WEISS J, HAUSE B, EGEA-CORTINES M. Validation of reference genes for quantitative real-time PCR during leaf and flower development in Petunia hybrida[J]. BMC Plant BiologyBMC Plant Biology, 2010, 10(4): 1-11.
-
[38]
丁苏芹, 李玺, 唐东芹. 小苍兰实时荧光定量PCR中的内参基因筛选[J]. 南京林业大学学报(自然科学版)南京林业大学学报(自然科学版), 2020, 44(3): 19-25.
DING S Q, LI X, TANG D Q. Screening on reference genes for real-time fluorescent quantitative PCR of Freesia hybrida[J]. Journal of Nanjing Forestry University (Natural Sciences Edition)Journal of Nanjing Forestry University (Natural Sciences Edition), 2020, 44(3): 19-25.
-
[1]
-
凯时66
图 3 正常生长下不同组织中内参基因geNorm分析稳定值
Figure 3. Expression stability value of the reference genes in different tissues under normal growth by geNorm
图 4 正常生长下不同组织中配对差异分析(Vn/n+1)最佳组合的内参基因数
Figure 4. Paired difference analysis (Vn/n+1), the best combination of reference genes number in different tissues under normal growth
图 5 不同干旱胁迫、不同组织中内参基因geNorm分析稳定值
Figure 5. Analysis of the stabilities of reference genes in different tissues under different drought stress by geNorm
图 6 不同干旱胁迫、不同组织中配对差异分析(Vn/n+1)最佳组合的内参基因数
Figure 6. Paired difference analysis (Vn/n+1), the best combination of reference genes number in different tissues under different drought stresstress
图 7 不同盐碱胁迫、不同组织中内参基因geNorm分析稳定值
Figure 7. Analysis of the stabilities of reference genes in different tissues under different salt-alkali stress by geNorm
图 8 不同盐碱胁迫、不同组织中配对差异分析(Vn/n+1)最佳组合的内参基因数
Figure 8. Paired difference analysis (Vn/n+1), the best combination of reference genes number in different tissues under different salt-alkali stress
表 1 内参基因信息及其引物序列
Table 1. Information of reference genes and their primer sequences
下载: 导出CSV
表 2 正常生长下不同组织中内参基因NormFinder分析稳定值
Table 2. Analysis of the stabilities of reference genes in different tissues under normal growth by NormFinder
组织
Tissue内参基因Reference gene 18s rRNA GAPDH Actin ACTB EF-1α UBQ CYP TUB 叶 Leaf 0.052 0.213 0.017 0.017 0.030 0.185 0.322 0.056 茎 Stem 0.126 0.111 0.095 0.006 0.419 0.039 0.036 0.126 根 Root 0.021 0.053 0.034 0.010 0.114 0.087 0.429 0.121 下载: 导出CSV
表 3 正常生长下不同组织中内参基因BestKeeper分析标准差
Table 3. Standard deviation of reference genes in different tissues under normal growth by BestKeeper analysis
组织
Tissue内参基因 Reference gene 18s rRNA GAPDH Actin ACTB EF-1α UBQ CYP TUB 叶 Leaf 0.10 0.21 0.04 0.07 0.04 0.15 0.34 0.05 茎 Stem 0.09 0.09 0.08 0.04 0.42 0.05 0.05 0.16 根 Root 0.04 0.10 0.04 0.08 0.14 0.09 0.40 0.14 下载: 导出CSV
表 4 不同干旱胁迫、不同组织中内参基因NormFinder分析稳定值
Table 4. Analysis of the stabilities of reference genes in different tissues under different drought stress by NormFinder
干旱胁迫时间
Drought stress time/d组织
Tissue内参基因 Reference genes 18s rRNA GAPDH Actin ACTB EF-1α UBQ CYP TUB 7 叶 Leaf 0.068 0.097 0.100 0.006 0.060 0.051 0.236 0.016 茎 Stem 0.021 0.015 0.062 0.020 0.036 0.347 0.034 0.273 根 Root 0.029 0.133 0.086 0.029 0.129 0.143 0.149 0.273 14 叶 Leaf 0.077 0.015 0.015 0.020 0.083 0.324 0.254 0.094 茎 Stem 0.024 0.039 0.086 0.113 0.086 0.031 0.201 0.107 根 Root 0.052 0.089 0.042 0.044 0.050 0.016 0.041 0.101 21 叶 Leaf 0.106 0.009 0.012 0.032 0.083 0.039 0.217 0.155 茎 Stem 0.046 0.067 0.080 0.009 0.185 0.118 0.195 0.035 根 Root 0.018 0.018 0.062 0.075 0.158 0.191 0.129 0.183 下载: 导出CSV
表 5 不同干旱胁迫、不同组织中内参基因BestKeeper分析稳定值
Table 5. Analysis of the stabilities of reference genes in different tissues under different drought stress by BestKeeper
干旱胁迫时间
Drought stress time/d组织
Tissue内参基因的标准差 The standard deviation of reference genes 18s rRNA GAPDH Actin ACTB EF-1α UBQ CYP TUB 7 叶 Leaf 0.07 0.11 0.11 0.08 0.06 0.07 0.24 0.03 茎 Stem 0.07 0.05 0.10 0.02 0.09 0.31 0.09 0.24 根 Root 0.06 0.13 0.03 0.07 0.12 0.13 0.16 0.30 14 叶 Leaf 0.09 0.04 0.05 0.04 0.09 0.33 0.24 0.10 茎 Stem 0.02 0.08 0.12 0.09 0.06 0.05 0.22 0.07 根 Root 0.03 0.11 0.08 0.01 0.10 0.06 0.02 0.11 21 叶 Leaf 0.13 0.07 0.05 0.02 0.11 0.02 0.19 0.17 茎 Stem 0.07 0.06 0.08 0.06 0.16 0.10 0.21 0.06 根 Root 0.02 0.03 0.10 0.10 0.16 0.21 0.10 0.16 下载: 导出CSV
表 6 不同盐碱胁迫、不同组织中内参基因NormFinder分析稳定值
Table 6. Analysis of the stabilities of reference genes in different tissues under different salt-alkali stress by NormFinder
盐碱胁迫浓度
Salt-alkali stress
concentration/(mmol·L−1)组织
Tissue内参基因 Reference genes 18s rRNA GAPDH Actin ACTB EF-1α UBQ CYP TUB 60 叶 Leaf 0.157 0.115 0.136 0.101 0.027 0.062 0.146 0.090 茎 Stem 0.089 0.063 0.041 0.069 0.076 0.090 0.146 0.034 根 Root 0.074 0.029 0.154 0.121 0.189 0.130 0.039 0.086 120 叶 Leaf 0.012 0.011 0.011 0.040 0.153 0.151 0.335 0.104 茎 Stem 0.072 0.110 0.134 0.099 0.089 0.027 0.266 0.086 根 Root 0.175 0.032 0.115 0.130 0.139 0.064 0.116 0.162 180 叶 Leaf 0.039 0.013 0.134 0.156 0.107 0.097 0.097 0.098 茎 Stem 0.092 0.051 0.174 0.023 0.083 0.14 0.235 0.013 根 Root 0.077 0.150 0.113 0.054 0.020 0.017 0.196 0.137 下载: 导出CSV
表 7 不同盐碱胁迫、不同组织中内参基因BestKeeper分析标准差
Table 7. Standard deviation of reference genes in different tissues under different salt-alkali stress by BestKeeper analysis
盐碱胁迫浓度
Salt-alkali stress
concentration/(mmol·L−1)组织
Tissue内参基因 Reference genes 18s rRNA GAPDH Actin ACTB EF-1α UBQ CYP TUB 60 叶 Leaf 0.16 0.10 0.13 0.13 0.03 0.09 0.15 0.07 茎 Stem 0.08 0.04 0.05 0.09 0.04 0.12 0.18 0.04 根 Root 0.03 0.11 0.22 0.08 0.25 0.16 0.16 0.10 120 叶 Leaf 0.07 0.04 0.05 0.12 0.22 0.21 0.25 0.18 茎 Stem 0.10 0.14 0.13 0.10 0.07 0.04 0.24 0.10 根 Root 0.15 0.04 0.13 0.11 0.13 0.08 0.13 0.18 180 叶 Leaf 0.08 0.04 0.18 0.17 0.12 0.09 0.07 0.06 茎 Stem 0.09 0.09 0.18 0.07 0.12 0.17 0.17 0.06 根 Root 0.15 0.13 0.15 0.09 0.11 0.07 0.25 0.04 下载: 导出CSV
表 8 不同处理、不同组织中内参基因稳定性综合排序
Table 8. Comprehensive ranking of the stability of reference genes in different tissues under different treatments
处理组
Treatment group内参基因
Reference gene叶 Leaf 茎 Stem 根 Root 稳定性分值
Stability score排序
Ranking稳定性分值
Stability score排序
Ranking稳定性分值
Stability score排序
Ranking正常生长
Normal growth18s rRNA 14 Ⅴ 16 Ⅴ 8 Ⅱ GAPDH 21 Ⅶ 16 Ⅴ 10 Ⅲ Actin 3 Ⅰ 11 Ⅳ 11 Ⅳ ACTB 6 Ⅱ 3 Ⅰ 5 Ⅰ EF-1α 8 Ⅲ 24 Ⅷ 16 Ⅵ UBQ 18 Ⅵ 6 Ⅱ 15 Ⅴ CYP 24 Ⅷ 8 Ⅲ 24 Ⅷ TUB 11 Ⅳ 20 Ⅶ 16 Ⅵ 干旱胁迫
Drought stress18s rRNA 14 Ⅳ 3 Ⅰ 3 Ⅰ GAPDH 5 Ⅰ 7 Ⅲ 11 Ⅳ Actin 6 Ⅱ 18 Ⅶ 9 Ⅲ ACTB 7 Ⅲ 6 Ⅱ 7 Ⅱ EF-1α 14 Ⅳ 17 Ⅵ 19 Ⅶ UBQ 14 Ⅳ 16 Ⅴ 18 Ⅵ CYP 22 Ⅷ 24 Ⅷ 15 Ⅴ TUB 21 Ⅶ 11 Ⅳ 24 Ⅷ 盐碱胁迫
Salt-alkali stress18s rRNA 14 Ⅴ 13 Ⅴ 17 Ⅵ GAPDH 3 Ⅰ 8 Ⅱ 8 Ⅲ Actin 14 Ⅴ 19 Ⅶ 20 Ⅷ ACTB 21 Ⅶ 8 Ⅱ 7 Ⅱ EF-1α 13 Ⅳ 9 Ⅳ 17 Ⅵ UBQ 7 Ⅱ 18 Ⅵ 4 Ⅰ CYP 24 Ⅷ 24 Ⅷ 15 Ⅴ TUB 8 Ⅲ 3 Ⅰ 14 Ⅳ 下载: 导出CSV
-