凯时66

欢迎访问 草业科学,今天是

模拟水分胁迫对多年生黑麦草种子萌发和生理调控的影响

刘亚西 周杨 李杨 刘金平 王丹

引用本文: 刘亚西,周杨,李杨,刘金平,王丹. 模拟水分胁迫对多年生黑麦草种子萌发和生理调控的影响. 草业科学, 2022, 39(0): 1-8 doi: shu
Citation:  LIU Y X, ZHOU Y, LI Y, LIU J P, WANG D. Simulated water stress on seed germination and physiological regulation of perennial ryegrass. Pratacultural Science, 2022, 39(0): 1-8 doi: shu

模拟水分胁迫对多年生黑麦草种子萌发和生理调控的影响

    作者简介: 刘亚西(1996-),女,四川宜宾人,在读硕士生,主要从事植物逆境生理研究。E-mail: 1431128281@qq.com
    通讯作者: 王丹(1982-),女,辽宁本溪人,讲师,博士,主要从事植物逆境生理与分子生物学研究。E-mail: wangdd0310@163.com
  • 基金项目: 西华师范大学博士科研基金(412837);四川省一流本科专业(园林专业)川教函[2019]31号

摘要: 为研究多年生黑麦草(Lolium perenne)种子萌发过程中水分代谢规律及水分胁迫对萌发过程生理调控的影响,连续观测黑麦草种子48 h内吸水情况,设置干旱和淹水胁迫处理,研究水分胁迫对黑麦草种子萌发、淀粉代谢、无氧呼吸酶活性以及抗氧化酶活性的影响。结果表明,黑麦草种子0–24 h为快速吸水期,吸水36 h后趋于饱和。干旱处理显著影响了种子的吸水量和吸水率(P < 0.05),并随着干旱程度的增加而逐渐降低。15%PEG和淹水胁迫与对照相比都显著降低了黑麦草种子的发芽势、发芽率、发芽指数、α-淀粉酶活性(P < 0.05)。淹水胁迫下黑麦草种子的乙醇脱氢酶(ADH)活性显著升高(P < 0.05)。干旱和淹水胁迫下黑麦草种子的超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)的活性与对照相比均显著增高(P < 0.05)。本研究结果为黑麦草种子萌发过程的水分管理提供了理论参考依据。

English

    1. [1]

      单旭东, 张睿, 麦吾丽代·卡哈尔, 古丽娜尔·努尔达吾列提, 许立新.  赤霉素浸种对PEG模拟干旱条件下多年生黑麦草种子萌发的影响[J]. 草业科学, 2019, 36(9): 2304-2311.
      SHAN X D, ZHANG R, Maiwulidai·Kahaer, Gulinaer·Nuerhawulieti, XU L X.  Effect of gibberellin soaking on seed germination of perennial ryegrass under polyethylene glycol simulated drought conditions[J]. Pratacultural Science, 2019, 36(9): 2304-2311.

    2. [2]

      KOCH E D E, HONIG J, VAICIUNAS J, MEYER W A, BONOS S A.  Effect of endophyte on salinity tolerance in perennial ryegrass[J]. International Turfgrass Society Research Journal, 2017, 13(1): 459-465. doi:

    3. [3]

      COCHRANE A.  Salt and waterlogging stress impacts on seed germination and early seedling growth of selected endemic plant species from Western Australia[J]. Plant Ecol, 2018, 219(6): 633-647. doi:

    4. [4]

      王传旗, 梁莎, 张文静, 邓时梅, 包赛很那, 苗彦军.  温度和水分对赖草种子萌发的影响[J]. 草业科学, 2018, 35(6): 1459-1464. doi:
      WANG C Q, LIANG S, ZHANG W J, DENG S M, Baosaihenna, MIAO Y J.  Effect of temperature and water on seed germination of Leymus secalinus[J]. Pratacultural Science, 2018, 35(6): 1459-1464. doi:

    5. [5]

      江生泉, 杨志民, 程建峰.  不同品种高羊茅种子吸水特性研究[J]. 云南农业大学学报(自然科学), 2018, 33(3): 474-479.
      JIANG S Q, YANG Z M, CHENG J F.  Study on water absorption characteristics of different varieties of tall fescue seeds[J]. Journal of Yunnan Agricultural University (Natural Science), 2018, 33(3): 474-479.

    6. [6]

      QUEIROZ M S, OLIVEIRA C E S, STEINER F, ZUFFO A M, ZOZ T, VENDRUSCOLO E P, SILVA M V, MELLO B F F R, CABRAL R C, MENIS F T.  Drought stresses on seed germination and early growth of maize and sorghum[J]. Journal of Agricultural Science, 2019, 11(2): 310-318. doi:

    7. [7]

      BAILEY-SERRES J, VOESENEK L A C J.  Flooding stress: Acclimations and genetic diversity[J]. Annual Review of Plant Biology, 2008, 59(1): 313-339. doi:

    8. [8]

      PARK M R, HASENSTEIN K H.  Oxygen dependency of germinating Brassica seeds[J]. Life Sciences in Space Research, 2016, 8(): 30-37. doi:

    9. [9]

      文迪. 玉米淀粉分解酶活性动态以及其相关基因时空表达分析. 成都: 四川农业大学硕士学位论文, 2010.
      WENG D. Analysis on the activity dynamics of maize starch decomposition enzyme and the spatiotemporal expression of related genes. Master Thesis. Chengdu: Sichuan Agricultural University, 2010.

    10. [10]

      胡育峰, 文迪, 张军杰.  不同玉米骨干自交系种子萌发时淀粉分解酶类活性动态变化[J]. 四川农业大学学报, 2013, 31(2): 127-130. doi:
      HU Y F, WEN D, ZHANG J J.  Dynamic changes of starch degradation enzyme activities in different maize inbred lines during germination[J]. Journal of Sichuan Agricultural University, 2013, 31(2): 127-130. doi:

    11. [11]

      王凤, 齐军仓, 林立昊, 惠宏杉, 郑许光, 郭亚南, 龚磊, 王少玉, 陈阿龙.  人工老化对大麦种子发芽特性及淀粉分解的影响[J]. 麦类作物学报, 2016, 36(7): 951-960. doi:
      WANG F, QI J C, LIN L H, HUI H S, ZHENG X G, GUO Y N, GONG L, WANG S Y, CHEN A L.  Effect of artificial aging on germination characteristics and starch depolymerization of barley seeds[J]. Journal of Triticeae Crops, 2016, 36(7): 951-960. doi:

    12. [12]

      CANDAN N, TARHAN L.  Tolerance or sensitivity responses of Mentha pulegium to osmotic and waterlogging stress in terms of antioxidant defense systems and membrane lipid peroxidation[J]. Environmental and Experimental Botany, 2012, 75(): 83-88. doi:

    13. [13]

      MICHEL B E, KAUFMANN M R.  The osmotic potential of polyethylene glycol 6000[J]. Plant Physiology, 1973, 51(5): 914-916. doi:

    14. [14]

      邹成林, 翟瑞宁, 钦洁, 谭华, 黄爱花, 韦新兴, 黄开健, 莫润秀, 黄艳芬.  不同浓度PEG模拟干旱胁迫对玉米种子萌发特性的影响[J]. 玉米科学, 2021, (6): 68-75.
      ZOU C L, ZHAI R N, QIN J, TAN H, HUANG A H, WEI X X, HUANG K J, MO R X, HUANG Y F.  Effects of simulated drought stress with different concentrations of PEG on germination characteristics of maize seed[J]. Journal of Maize Sciences, 2021, (6): 68-75.

    15. [15]

      李珍, 云岚, 石子英, 王俊, 张晨, 郭宏宇.  盐胁迫对新麦草种子萌发及幼苗期生理特性的影响[J]. 草业学报, 2019, 28(8): 119-129. doi:
      LI Z, YUN L, SHI Z Y, WANG J, ZHANG C, GUO H Y.  Physiological characteristics of Psathyrostachys juncea at seed germination and seedling growth stages under salt stress[J]. Acta Prataculturae Sinica, 2019, 28(8): 119-129. doi:

    16. [16]

      ZHU J J, KANG H Z, TAN H, XU M L.  Effects of drought stresses induced by polyethylene glycol on germination of Pinus sylvestris var. mongolica seeds from natural and plantation forests on sandy land[J]. Journal of Forest Research volume, 2006, 11(5): 319-328. doi:

    17. [17]

      吴红, 韦庆翠, 刘行, 李成忠.  棉团铁线莲种子吸水特性及萌发温度的研究[J]. 种子, 2018, 37(10): 98-101.
      WU H, WEI Q C, LIU H, LI C Z.  Study on water absorption characteristics and germination temperature of Clematis hexapetala seeds[J]. Seed, 2018, 37(10): 98-101.

    18. [18]

      董淼, 罗倩, 翁殊斐.  自然贮藏与淹水胁迫对水翁种子萌发的影响[J]. 种子, 2016, 35(9): 88-90.
      DONG M, LUO Q, WENG S F.  The effects of natural storage and waterlogging stress on seed germination of Syzygium nervosum[J]. Seed, 2016, 35(9): 88-90.

    19. [19]

      ZHOU W G, CHEN F, MENG Y J, CHANDRASEKARAN U, LUO X F, YANG W Y, SHU K.  Plant waterlogging/flooding stress responses: From seed germination to maturation[J]. Plant Physiology and Biochemistry, 2020, 148(): 228-236. doi:

    20. [20]

      BROWNSTEIN G, WILSON J B, BURRITT D J.  Waterlogging tolerance on a New Zealand saltmarsh[J]. Journal of Experimental Marine Biology and Ecology, 2013, 446(): 202-208. doi:

    21. [21]

      RAHMAN M, GROVER A, PEACOCK W J, DENNIS E S, ELLIS M H.  Effects of manipulation of pyruvate decarboxylase and alcohol dehydrogenase levels on the submergence tolerance of rice[J]. Australian Journal of Plant Physiology, 2001, 28(12): 1231-1241.

    22. [22]

      HUANG J, TOYOFUKU K, YAMAGUCHI J, AKITA S.  Expression of α-Amylase isoforms and the RAmylA gene in rice (Oryza sativa L. ) during seed germination, and its relationship with coleoptile length in submerged soil[J]. Plant Production Science, 2000, 3(1): 32-37. doi:

    23. [23]

      金宁, 吕剑, 郁继华, 颉建明, 金莉, 张国斌, 冯致.  外源硅对PEG渗透胁迫下黄瓜种子萌发及相关基因表达的影响[J]. 园艺学报, 2020, 47(1): 41-52.
      JIN N, LYU J, YU J H, XIE J M, JIN L, ZHANG G B, FENG Z.  Effect of exogenous silicon on seed germination and expression of related genes in cucumber under osmotic stress[J]. Acta Horticulturae Sinica, 2020, 47(1): 41-52.

    24. [24]

      BIAŁECKA B, KĘPCZYŃSKI J.  Germination, α-, β-amylase and total dehydrogenase activities of Amaranthus caudatus seeds under water stress in the presence of ethephon or gibberellin A3[J]. Acta Biologica Cracoviensia Series Botanica, 2010, 52(1): 7-12.

    25. [25]

      LORETI E, ALPI A, PERATA P.  α-Amylase expression under anoxia in rice seedlings: an update[J]. Russian Journal of Plant Physiology, 2003, 50(6): 825-831.

    26. [26]

      YEUNG E, VEEN H V, VASHISHT D, PAIVA A L S, HUMMEL M, RANKENBERG T, STEFFENS B, HEINSE A S, SAUTER M, VRIES M D, SCHUURINK R C, BAZIN J, SERRES J B, VOESENEK L A C J, SASIDHARAN R.  A stress recovery signaling network for enhanced flooding tolerance in Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences, 2018, 115(26): 6085-6094.

    27. [27]

      HOSSAIN Z, LÓPEZ-CLIMENT M F, ARBONA V, PÉREZ-CLEMENTE R M, GÓMEZ-CADENAS A. Modulation of the antioxidant system in Citrus under waterlogging and subsequent drainage. Journal of Plant Physiology. 2009, 166(13): 1391-1404.

    28. [28]

      LOTFI N, SOLEIMANI A, VAHDATI K, CAKMAKCI R.  Comprehensive biochemical insights into the seed germination of walnut under drought stress[J]. Scientia Horticulturae, 2019, 250(): 329-343. doi:

    29. [29]

      秦立刚, 李雪, 李韦瑶, 胡尧, 李俊, 崔国文.  PEG干旱胁迫对3种葱属植物种子萌发期渗透调节物质及酶活性的影响[J]. 草地学报, 2021, 29(1): 72-79.
      QIN L G, LI X, LI W Y, HU Y, LI J, CUI G W.  Effects of PEG stress on regulation substance and enzyme activities during seed germination of three Allium L[J]. Acta Agrestia Sinica, 2021, 29(1): 72-79.

    30. [30]

      薛静怡, 杨浩娜, 唐易, 彭亚军, 王立峰.  水分胁迫对千金子种子萌发及生理生化特性的影响[J]. 种子, 2021, 40(5): 33-38.
      XUE J Y, YANG H N, TANG Y, PENG Y J, WANG L F.  Effects of water stress on seed germination and physiological and biochemical characteristics of Leptochloa chinensis seeds[J]. Seed, 2021, 40(5): 33-38.

    31. [31]

      GOMATHI R, MANOHARI G, RAKKIYAPPAN P.  Antioxidant enzymes on cell membrane integrity of sugarcane varieties differing in flooding tolerance[J]. Sugar Tech, 2012, 14(3): 261-265. doi:

    1. [1]

      王丹刘亚西周扬黎彬聂书明 . 油菜素内酯对盐胁迫下黑麦草种子萌发及幼苗生长的生理调控作用. 草业科学, doi: 

    2. [2]

      寇江涛 . 外源2, 4-表油菜素内酯对盐胁迫下燕麦种子萌发抑制的缓解效应. 草业科学, doi: 

    3. [3]

      李善家韩多红王恩军武燕 . 外源甜菜碱对盐胁迫下黑果枸杞种子萌发和幼苗保护酶活性的影响. 草业科学, doi: 

    4. [4]

      彭丹丹王晓娟李 州李亚萍彭 燕 . 亚精胺对PEG渗透胁迫下白三叶种子萌发及幼苗抗旱效应的影响. 草业科学, doi: 

    5. [5]

      石新建王彦芹李志军 . 盐旱胁迫对花花柴种子萌发与幼苗生理生化特性的影响. 草业科学, doi: 

    6. [6]

      胡佳瑶王悟敏匡雪韶刘文胜 . 镉胁迫下青葙种子萌发及幼苗生理特性. 草业科学, doi: 

    7. [7]

      徐苏男李悦陈忠林张利红 . 养分异质条件下连接和断开结缕草克隆分株抗氧化酶及丙二醛的生理整合. 草业科学, doi: 

    8. [8]

      王晓凌郭丽丽 . 细胞分裂素调控的不同茬高黑麦草再生机制. 草业科学, doi: 

    9. [9]

      孙园园关萍何杉石建明 . 镉胁迫对多花黑麦草镉积累特征、生理抗性及超微结构的影响. 草业科学, doi: 

    10. [10]

      陈俊婕朱三明郝淼韩同宇李玉王高阳杨修一耿计彪陈剑秋 . 包膜氮肥配施不同用量钾肥对多年生黑麦草植株生理指标及产量的影响. 草业科学, doi: 

    11. [11]

      黄柳范宣刘金平游明鸿曾晓琳 . 苗床类型对川西柳叶菜种子萌发及幼苗生长的影响. 草业科学, doi: 

    12. [12]

      牛东伟马男房卓研李彦慧 . 水分胁迫下墨西哥羽毛草耐旱生理. 草业科学, doi: 

    13. [13]

      蒋倩张瑞李翔高静雅王宁张朝铖蒋凯 . 水分胁迫下4种观赏草的生理特性. 草业科学, doi: 

    14. [14]

      王富强向洁王立威余成群沈振西邵小明 . 混播或单播箭筈豌豆、绿麦草对水分胁迫的形态特征响应. 草业科学, doi: 

    15. [15]

      李亚婷康建宏吴宏亮李昱姚珊 . 花后水分胁迫对春小麦淀粉形成及相关酶活性的影响. 草业科学, doi: 

    16. [16]

      蔺伟虎汪建军李会强张光明田沛 . 不同生长条件下内生真菌对多年生黑麦草生理特性的影响. 草业科学, doi: 

    17. [17]

      张颖超贾玉山任永霞 . 钠盐胁迫对白花草木樨种子发芽的影响. 草业科学,

    18. [18]

      陈花王建武王建军王富刚 . 外源NO对盐胁迫下沙打旺种子萌发和幼苗生长的影响. 草业科学, doi: 

    19. [19]

      汪永平骆凯胡小文马福成田小飞张宝林塔拉腾刘晓燕张吉宇 . PEG和NaCl胁迫对草木樨种子萌发和幼苗生长的影响. 草业科学, doi: 

    20. [20]

      黄玉婷吴亚刘大林张卫红 . 铝胁迫对草本植物生理的影响机制. 草业科学, doi: 

  • 凯时66

    图 1  不同水分胁迫对黑麦草种子萌发吸水特性的影响

    Figure 1.  Effects of different water stress treatments on germination and water absorption characteristics of ryegrass seeds

    CK,蒸馏水;T1,10%PEG;T2,15%PEG;T3,20%PEG;T4,淹水;下同。

    CK,distilled water;T1,10%PEG;T2,15%PEG;T3,20%PEG;T4,waterflooding;this is applicable for the following figures and tables as well.

    图 2  不同水分胁迫对黑麦草种子乙醇脱氢酶活性的影响

    Figure 2.  Effects of different water stress treatments on alcohol dehydrogenase activity in ryegrass seeds

    图 3  不同水分胁迫对黑麦草种子α-淀粉酶活性和淀粉含量的影响

    Figure 3.  Effects of different water stress treatments on α-amylase activity and starch content in ryegrass seeds

    图 4  不同水分胁迫对黑麦草种子抗氧化酶活性的影响

    Figure 4.  Effects of different water stress treatments on antioxidant enzyme activities of ryegrass seeds

    表 1  不同水分胁迫对黑麦草种子最终吸水量和吸水率的影响

    Table 1.   Effects of different water stress treatments on final water quantity and water absorption by ryegrass seeds

    处理
    Treatment
    吸水量
    Water quantity/mg
    吸水率
    Water absorption/%
    CK1.567 ± 0.062a1.340 ± 0.015a
    T11.395 ± 0.031b1.212 ± 0.052b
    T21.318 ± 0.023b1.166 ± 0.015b
    T31.218 ± 0.086c1.036 ± 0.073c
    T41.592 ± 0.031a1.369 ± 0.049a
    F28.12625.414
    P < 0.001 < 0.001
     同列不同小写字母表示不同处理间差异显著(P < 0.05);下同。
     Different lowercase letters within the same column indicate a significant difference between the different treatments at the 0.05 level, this is applicable for the following figures and tables as well.
    下载: 导出CSV

    表 2  不同水分胁迫对黑麦草种子萌发指标的影响

    Table 2.  Effects of different water stress treatments on germination indexes of ryegrass seeds

    处理
    Treatment
    发芽势
    Germination energy/%
    发芽率
    Germination rate/%
    发芽指数
    Germination index
    株高
    Plant height/cm
    根长
    Length of root/cm
    CK0.91 ± 0.01a0.95 ± 0.03a19.03 ± 1.28a5.43 ± 0.44a1.88 ± 0.26c
    T10.83 ± 0.01a0.88 ± 0.04ab16.13 ± 0.39b4.10 ± 0.27bc1.68 ± 0.17c
    T20.68 ± 0.08b0.72 ± 0.09c11.96 ± 1.86c3.38 ± 0.52c2.63 ± 0.59b
    T40.63 ± 0.04b0.80 ± 0.03bc11.78 ± 1.11c4.58 ± 0.31b4.56 ± 0.39a
    F24.39710.21222.69214.13734.704
    P < 0.0010.004 < 0.0010.001 < 0.001
    下载: 导出CSV
    凯时66
  • 加载中
图(4)表(2)
计量
  • PDF下载量:  5
  • 文章访问数:  87
  • HTML全文浏览量:  33
文章相关
  • 通讯作者:  王丹, wangdd0310@163.com
  • 收稿日期:  2021-09-24
  • 接受日期:  2021-12-15
  • 网络出版日期:  2022-04-18
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
凯时66