凯时66

欢迎访问 草业科学,今天是

‘青燕1号’幼苗叶绿素合成和荧光特性对土壤干旱的响应

刘凯强 贾志锋 梁国玲 刘勇 马祥 刘文辉

引用本文: 刘凯强,贾志锋,梁国玲,刘勇,马祥,刘文辉. ‘青燕1号’幼苗叶绿素合成和荧光特性对土壤干旱的响应. 草业科学, 2022, 39(6): 1-12 doi: shu
Citation:  LIU K Q, JIA Z F, LIANG G L, LIU Y, MA X, LIU W H. Response of chlorophyll synthesis and fluorescence characteristics of oat seedlings to soil drought. Pratacultural Science, 2022, 39(6): 1-12 doi: shu

‘青燕1号’幼苗叶绿素合成和荧光特性对土壤干旱的响应

    作者简介: 刘凯强(1992-),男,甘肃宁县人,在读博士生,主要从事牧草种质资源抗逆性研究。E-mail: lkqgsqy@126.com
    通讯作者: 刘文辉(1979-),男,青海贵德人,研究员,博士,主要从事牧草种质资源创新与利用。E-mail: qhliuwenhui@163.com
  • 基金项目: 青海省科技厅重点实验室发展专项“青海省青藏高原优良牧草种质资源利用重点实验室”(2020-ZJ-Y03),青海省“高端创新人才计划”、“昆仑英才 乡村振兴人才”专项农业农村科技攻关团队和现代农业产业技术体系建设专项资金(CARS)

摘要: 土壤干旱是限制青海省燕麦(Avena sativa)幼苗生长发育的重要因素之一,为探究燕麦对干旱的响应机理,本研究以青海省主栽燕麦品种‘青燕1号’为试验材料,采用单因素随机区组设计,设4个水分处理,其中土壤含水量分别为18.75%、15.00%、11.25%和7.5%,探讨幼苗叶绿素及其前体物质和荧光参数变化特点,完善该品种在干旱研究中的不足,为评价燕麦抗旱提供理论基础。结果显示:不同土壤干旱显著影响燕麦幼苗的发育,降低了幼苗株高和叶长宽比,降低幅度24.3%~68.2%,增加了地下部分分配比例,增加范围0.59~0.71倍。干旱导致叶绿素及其前体物质代谢失衡,胁迫增加了叶绿素合成前体δ-氨基乙酰丙酸含量,降低了胆色素原、粪卟啉原Ⅲ、原卟啉IX、镁原卟啉IX和原叶绿素酸酯含量,最终造成叶绿素含量下降。叶绿素含量降低引起了燕麦光合系统的光能吸收、利用和分配失衡,土壤干旱下过剩光能主要通过热耗散的形式散失,这可能是燕麦保护光合系统光抑制和光破坏加剧的重要策略。

English

    1. [1]

      MARIA C D, SANDRA C, JOÃO S, ARTUR S S, HELENA F, CONCEICÃO S.  Chlorophyll fluorescence and oxidative stress endpoints to discriminate olive cultivars tolerance to drought and heat episodes[J]. Scientia Horticulturae, 2018, 231(): 31-35. doi:

    2. [2]

      SONGSRI P, JOGLOY S, VORASOOT N, AKKASAENG C, PATANOTHAI A, HOLBROOK C C.  Root distribution of drought-resistant peanut genotypes in response to drought[J]. Journal of Agronomy and Crop Science, 2008, 194(2): 92-103. doi:

    3. [3]

      FRESCHET G T, CORNELISSEN J H C, LOGTESTIJN R S P V, AERTS R.  Evidence of the ‘plant economics spectrum’ in a subarctic flora[J]. Journal of Ecology, 2010, 98(2): 362-373. doi:

    4. [4]

      牛奎举. 外源5-氨基乙酰丙酸对干旱胁迫下草地早熟禾光合作用的调控机制. 兰州: 甘肃农业大学博士学位论文, 2018.
      NIU K J. The role of 5-aminolevulinic acid on regulation mechanism of photosynthesis in Kentucky bluegrass seedlings under drought stress. PhD Thesis. Lanzhou: Gansu Agricultural University, 2018.

    5. [5]

      刘文文, 崔会婷, 尉春雪, 龙瑞才, 康俊梅, 杨青川, 王珍.  蒺藜苜蓿叶绿素酸酯a加氧酶(MtCAO)基因的克隆与功能分析[J]. 草业学报, 2020, 29(5): 174-184.
      LIU W W, CUI H T, YU C X, LONG R C, KANG J M, YANG Q C, WANG Z.  Cloning and functional analysis of chlorophyllide a oxygenase encoding gene MtCAO in Medicago truncatula[J]. Acta Prataculturae Sinica, 2020, 29(5): 174-184.

    6. [6]

      MIR R A, SOMASUNDARAM R, PANNEERSELVAM R.  Changes in antioxidant enzymes activities mitigates deleterious effects of ROS in Panicum miliaceum (L. ) under drought stress[J]. Journal of Stress Physiology & Biochemistry, 2019, 15(3): 81-91.

    7. [7]

      KADHIMI A A, ZAIN C, ALHASNAWI A N, ISAHAK A, ASHRAF M F, MOHAMAD A, DONI F, YUSOFF W M W.  Effect of irradiation and polyethylene glycol on drought tolerance of MR269 genotype rice (Oryza sativa L.)[J]. Asian Journal of Crops Science, 2016, 8(2): 52-59. doi:

    8. [8]

      HAFIZ G M D A, YWAEN Z, XIAO M Y, HAFIZ A A, MUHAMMAD Z M, HANIF C M S, KAMRAN I, AZIZ U, SULIMAN M, SULIMAN A.  Conferring drought-tolerant wheat genotypes through morpho-physiological and chlorophyll indices at seedling stage[J]. Saudi Journal of Biological Sciences, 2020, 27(8): 2116-2123. doi:

    9. [9]

      NXELE X, KLEIN A, NDIMBA B K.  Drought and salinity stress alters ROS accumulation, water retention, and osmolyte content in sorghum plants[J]. South African Journal of Botany, 2017, 108(): 261-266. doi:

    10. [10]

      夏阳.  水分逆境对果树脯氨酸和叶绿素含量变化的影响[J]. 甘肃农业大学学报, 1993, 28(1): 30-35.
      XIA Y.  Effects of water stress on the contents of proline and chlorophyll in fruit tree[J]. Journal of Gansu Agricultural University, 1993, 28(1): 30-35.

    11. [11]

      陈菁, 石伟琦, 孙光明, 冼皑敏.  干旱胁迫对菠萝苗期生长及叶绿素含量的影响[J]. 热带农业科学, 2012, 32(7): 9-11. doi:
      CHEN J, SHI W Q, SUN G M, XIAN A M.  Effects of drought stress on the growth and chlorophyll content of pineapple seedling[J]. Chinese Journal of Tropical Agriculture, 2012, 32(7): 9-11. doi:

    12. [12]

      张永强, 毛学森, 孙宏勇, 李文杰, 于沪宁.  干旱胁迫对冬小麦叶绿素荧光的影响[J]. 中国生态农业学报, 2002, 10(4): 13-15.
      ZHANG Y Q, MAO X S, SUN H Y, LI W J, YU H N.  Effects of drought stress on chlorophyll fluorescence of winter wheat[J]. Chinese Journal of Eco-Agriculture, 2002, 10(4): 13-15.

    13. [13]

      张翠梅, 师尚礼, 陈建纲.  干旱胁迫对苜蓿幼苗叶绿素荧光特性和膜脂过氧化的影响[J]. 草原与草坪, 2019, 39(1): 18-29.
      ZHANG C M, SHI S L, CHEN J G.  Effects of drought stress on chlorophyll fluorescence parameters and lipid peroxodation in alfalfa seedlings[J]. Grassland and Turf, 2019, 39(1): 18-29.

    14. [14]

      NANKISHORE A, FARRELL A D.  The response of contrasting tomato genotypes to combined heat and drought stress[J]. Journal of plant physiology, 2016, 202(): 75-82. doi:

    15. [15]

      王正航, 武仙山, 昌小平, 李润植, 景蕊莲.  小麦旗叶叶绿素含量及荧光动力学参数与产量的灰色关联度分析[J]. 作物学报, 2010, 36(2): 217-227. doi:
      WANG Z H, WU X S, CHANG X P, LI R Z, JING R L.  Chlorophyll content and chlorophyll fluorescence kinetics parameters of flag leaf and their gray relational grade with yield in wheat[J]. Acta Agronomica Sinica, 2010, 36(2): 217-227. doi:

    16. [16]

      徐长林.  高寒牧区不同燕麦品种生长特性比较研究[J]. 草业学报, 2012, 21(2): 280-285. doi:
      XU C L.  A study on growth characteristics of different cultivars of oat (Avena sativa) in alpine region[J]. Acta Prataculturae Sinica, 2012, 21(2): 280-285. doi:

    17. [17]

      WELCH R W, BROWN J C W, LEGGETT J M.  Interspecific and intraspecific variation in grain and groat characteristics of wild oat (Avena) species: Very high groat (1→3), (1→4)-β- D -glucan in an Avena atlantica genotype[J]. Journal of Cereal Science, 2000, 31(3): 273-279. doi:

    18. [18]

      ROJAS G, CATRILEO S, GREZ V.  Productive and economic evaluation of the inclusion of whole grain oat (Avena sativa L.) and lupin (Lupinus angustifolius L.) in winter fattening rations for heifers[J]. Agro-Ciencia, 2011, 27(1): 41-48.

    19. [19]

      刘凯强, 刘文辉, 贾志锋, 魏小星, 梁国玲, 马祥.  不同播量、行距及播种方式对青燕1号燕麦饲草产量的影响[J]. 草地学报, 2019, 27(4): 1060-1067.
      LIU K Q, LIU W H, JIA Z F, WEI X X, LIANG G L, MA X.  Effect of different sowing rate, row spacing and sowing methods on forage yield of Avena sativa cv. Qingyan No. 1[J]. Acta Agrestia Sinica, 2019, 27(4): 1060-1067.

    20. [20]

      WANG X L, WANG H W, LIU S X, FERJANI A, LI J S, YAN J B, YANG X H, QIN F.  Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings[J]. Nature Genetics, 2016, 48(10): 1233-1241. doi:

    21. [21]

      SHARMA P, DBUEY R S.  Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings[J]. Plant Growth Regulation, 2005, 46(3): 209-221. doi:

    22. [22]

      WEN X, ZHU X C, YU R Y, XIONG J L, GAO D S, JIANG Y M, YANG C J.  Visualization of chlorophyll content distribution in apple leaves based on hyperspectral imaging technology[J]. Agricultural Sciences, 2019, 10(6): 783-795. doi:

    23. [23]

      钟小兰. 红苞凤梨金边嵌合体白化细胞叶绿素合成限速基因挖掘. 成都: 四川农业大学硕士学位论文, 2015.
      ZHONG X L. Chlorophyll synthesis rate-limiting gene mining of the albino cells of Ananas bracteatus. Master Thesis. Chengdu: Sichuan Agricultural University, 2015.

    24. [24]

      BOGORAD L. Methods in Enzymology. New York: Academic Press, 1962.

    25. [25]

      CZARNECJI O, PETER E, GRIMM B.  Methods for analysis of photosynthetic pigments and steady-state levels of intermediates of tetrapyrrole biosynthesis[J]. Chloroplast Research in Arabidopsis, 2011, 75(): 357-385.

    26. [26]

      陈友根, 崔利, 陈劲枫.  甜瓜属正反交杂种叶绿素生物合成与代谢研究[J]. 植物生理学报, 2013, 49(5): 452-456.
      CHEN Y G, CUI L, CHEN J F.  Chlorophyll biosynthesis and metabolism analyses of reciprocal interspecific hybrid between Cucumis hystrix and C. sativus[J]. Plant Physiology Communications, 2013, 49(5): 452-456.

    27. [27]

      LI H, ZHANG G C, XIE H C, LI K, ZHANG S Y.  The effects of the phenol concentrations on photosynthetic parameters of Salix babylonica L[J]. Photosynthetica, 2015, 53(3): 430-435. doi:

    28. [28]

      SCHREIBER U, SCHLIWA U, BILGER W.  Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer[J]. Photosynthesis Research, 1986, 10(1): 51-62.

    29. [29]

      GENTY B, BRIANTAIS J M, BAKER N R.  The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J]. Biochimica et Biophysica Acta (BBA)-General Subjects, 1989, 990(1): 87-92. doi:

    30. [30]

      BRAUN G, MALKIN S.  Regulation of the imbalance in light excitation between photosystem II and photosystem I by cations and by the energized state of the thylakoid membrane[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1990, 1017(1): 79-90. doi:

    31. [31]

      DEMMIG-ADAMS B, ADAMS III W W, BARKER D H, LOGAN B A, BOWLING D R, VERHOEVEN A S.  Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation[J]. Physiologia Plantarum, 1996, 98(2): 253-264.

    32. [32]

      KATZ J J, JAMES R, NORRIS J R.  Chlorophyll and light energy transduction in photosynthesis[J]. Current Topics in Bioenergetics, 1973, 5(): 41-75.

    33. [33]

      宋吉轩, 李金还, 刘美茹, 牛建行, 王冉, 吕俊, 宗学凤, 王三根.  油菜素内酯对干旱胁迫下羊草渗透调节及抗氧化酶的影响研究[J]. 草业学报, 2015, 24(8): 93-102.
      SONG J X, LI J H, LIU M R, NIU J H, WANG R, LYU J, ZONG X F, WANG S G.  Effects of brassinosteroid application on osmotic adjustment and antioxidant enzymes in Leymus chinensis under drought stress[J]. Acta Prataculturae Sinica, 2015, 24(8): 93-102.

    34. [34]

      张咏梅.  黄花草木樨耐NaHCO3盐碱胁迫的解剖学解释[J]. 草业学报, 2016, 25(9): 83-95. doi:
      ZHANG Y M.  Anatomical mechanism of Melilotus officinalis tolerance to NaHCO3 aline-alkaline stress[J]. Acta Prataculturae Sinica, 2016, 25(9): 83-95. doi:

    35. [35]

      韩志平, 郭世荣, 冯吉庆, 高新昊.  盐胁迫对西瓜幼苗生长、叶片光合色素和脯氨酸含量的影响[J]. 南京农业大学学报, 2008, 31(2): 32-36.
      HAN Z P, GUO S R, FENG J Q, GAO X H.  Effect of salinity on plant growth, photosynthetic pigments and proline content in leaves of watermelon seedlings[J]. Journal of Nanjing Agricultural University, 2008, 31(2): 32-36.

    36. [36]

      DALAL K V, TRIPATHY B C.  Modulation of chlorophyll biosynthesis by water stress in rice seedlings during chloroplast biogenesis[J]. Plant, Cell & Environment, 2012, 35(9): 1685-1703.

    37. [37]

      赵艳艳. 外源5-氨基乙酰丙酸缓解番茄幼苗盐胁迫的效果及机理研究. 杨凌: 西北农林科技大学博士学位论文, 2014.
      ZHAO Y Y. Alleviative and its mechanism of exogenous 5-aminolevulinic acid on tomato seedlings subjected to salt stress. PhD Thesis. Yangling: Northwest A&F University, 2014.

    38. [38]

      姚嘉龙, 郭蓓, 谢皓.  叶绿素合成关键酶基因表达的半定量RT-PCR分析[J]. 基因组学与应用生物学, 2015, 34(3): 593-598.
      YAO J L, GUO B, XIE H.  Expression analysis of key enzyme gene involved in chlorophyll biosynthesis by semi-quantitative RT-PCR[J]. Genomics and Applied Biology, 2015, 34(3): 593-598.

    39. [39]

      VANISRI S, SREEDHAR M, JEEVAN L, PAVANI A, CHATURVEDI A.  Evaluation of rice genotypes for chlorophyll content and scavenging enzyme activity under the influence of mannitol stress towards drought tolerance[J]. International Journal of Current Microbiology and Applied Sciences, 2017, 6(12): 2907-2917. doi:

    40. [40]

      张明生, 谈锋.  水分胁迫下甘薯叶绿素a/b比值的变化及其与抗旱性的关系[J]. 种子, 2001, 52(4): 23-25. doi:
      ZHANG M S, TAN F.  Relationship between ratio of chlorophyll a and b under water stress and drought resistance of different sweet potato varieties[J]. Seed, 2001, 52(4): 23-25. doi:

    41. [41]

      梁欢, 韦宝, 陈静, 宫文龙, 马琳, 王学敏, 王赞.  基于叶绿素荧光参数的紫花苜蓿种质苗期抗旱性评价[J]. 草地学报, 2020, 28(1): 48-58.
      LIANG H, WEI B, CHEN J, GONG W L, MA L, WANG X M, WANG Z.  Evaluation of the drought resistance in alfalfa germplasm by chlorophyll fluorescence parameters at seedling stage[J]. Acta Agrestia Sinica, 2020, 28(1): 48-58.

    42. [42]

      孙骏威, 杨勇, 蒋德安.  水分亏缺下水稻的光化学和抗氧化应答[J]. 浙江大学学报(农业与生命科学版), 2004, 30(3): 278-284.
      SUN J W, YANG Y, JIANG D A.  Photochemical and antioxidant behavior of rice in response to water deficit[J]. Journal of Zhejiang University (Agriculture & Life Sciences Edition), 2004, 30(3): 278-284.

    43. [43]

      GIARDI M T, CONA A, GEIKEN B, KUČERA T, MASOÍDEK J, MATTOO A K.  Long-term drought stress induces structural and functional reorganization of photosystem II[J]. Planta, 1996, 199(1): 118-125. doi:

    44. [44]

      SEZGIN A, ALTUNTAS C, DEMIRALAY M, CINEMRE S, TERZI R.  Exogenous alpha lipoic acid can stimulate photosystem II activity and the gene expressions of carbon fixation and chlorophyll metabolism enzymes in maize seedlings under drought[J]. Journal of Plant Physiology, 2019, 232(): 65-73. doi:

    45. [45]

      CHEN Y E, LIU W J, SU Y Q, CUI J M, ZHANG Z W, YUAN M, ZHANG H Y, YUAN S.  Different response of photosystem II to short and long-term drought stress in Arabidopsis thaliana[J]. Physiologia Plantarum, 2016, 158(2): 225-235. doi:

    46. [46]

      NISHIYAMA Y, ALLAKHVERDIEV I, MURATA N.  Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II[J]. Physiologia Plantarum, 2011, 142(1): 35-46. doi:

    47. [47]

      TAIZ L, ZEIGER E, MOLLER I M, MURPHY A. Plant physiology and development. Sunderland, Sinauer Associates Incorporated, 2015.

    48. [48]

      单云鹏, 陈新慧, 万平, 赵波, 杨凯, 李奕松.  小豆种质资源苗期抗旱性评价及抗旱资源筛选[J]. 植物遗传资源学报, 2019, 20(5): 63-71.
      SHAN Y P, CHEN X H, WAN P, ZHAO B, YANG K, LI Y S.  Drought resistance evaluation of adzuki bean germplasm at seedling stage and screening of the drought-resistant resources[J]. Journal of Plant Genetic Resources, 2019, 20(5): 63-71.

    49. [49]

      田梦雨. 干旱胁迫对小麦苗期生长的影响及其生理机制. 南京: 南京农业大学硕士论文, 2009
      TIAN M Y. Effects of drought stresses on seedling growth and its physiological mechanism in wheat. Master Thesis. Nanjing: Nanjing Agricultural University, 2009.

    50. [50]

      ANJUM S A, ASHRAF U, TANVEER M, KHAN I, HUSSAIN S, SHAHZAD B, ZOHAIB A, ABBAS F, SALEEM M, ALI I, WANG L C.  Drought induced changes in growth, osmolyte accumulation and antioxidant metabolism of three maize hybrids[J]. Frontiers in plant science, 2017, 8(): 1-12.

    51. [51]

      翟苗苗. 饲草燕麦在辽西半干旱地区的产量与品质效应研究. 沈阳: 辽宁大学硕士学位论文, 2014
      ZHAI M M. Research on the effect of yield and quality of forage oats in semi-arid areas of Western Liaoning Province. Master Thesis. Shenyang: Liaoning University, 2014.

    1. [1]

      郑柳贺雪莲邱文敏韩小娇刘明英何正权卓仁英 . 镉处理后两种景天的光合相关参数变化. 草业科学, doi: 

    2. [2]

      姚春娟郭圣茂马英超赖晓莲杨肖华 . 干旱胁迫对4种决明属植物光合作用和叶绿素荧光特性的影响. 草业科学, doi: 

    3. [3]

      王波曾凡江张波高欢欢张玲李梅梅罗瀚林李世民 . 骆驼刺叶片形态和叶绿素荧光特性对不同潜水埋深的响应. 草业科学, doi: 

    4. [4]

      宋述锐于华黄椰张卫红 . 不同钾肥对渍水胁迫下紫花苜蓿叶绿素荧光特性的影响. 草业科学, doi: 

    5. [5]

      刘金荣张旭杨有俊刘译锴柳莉 . 再生水对两种绿地植物光合特性及叶绿素含量的影响. 草业科学,

    6. [6]

      阎尚博钱永强张艳闫丽董丽 . 土壤含水量对4种委陵菜属植物生长及生理影响. 草业科学, doi: 

    7. [7]

      琚泽亮赵桂琴覃方锉焦婷 . 含水量对燕麦及燕麦+箭筈豌豆裹包青贮品质的影响. 草业科学, doi: 

    8. [8]

      韩润燕陈彦云李旺霞 . 不同微地形固定沙丘地上植被、土壤种子库和土壤含水量的分布特征. 草业科学, doi: 

    9. [9]

      孙善军邹长明张晓红赵敏何涛 . 遮阴对两个绿豆品种光合作用和生长发育的影响. 草业科学, doi: 

    10. [10]

      肖雪君周青平陈有军杜忠柏晓玲田莉华彭先琴 . 播种量对高寒牧区林纳燕麦生产性能及光合特性的影响. 草业科学, doi: 

    11. [11]

      崔媛媛白柳王梓晗赵宏宇宝音贺西格李治国韩国栋王忠武 . 模拟降水对荒漠草原生态系统碳交换的影响. 草业科学, doi: 

    12. [12]

      闫车太赵桂琴柴继宽苟智强许兴泽 . 两种除草剂在燕麦田土壤中的残留与消解动态. 草业科学, doi: 

    13. [13]

      严俊鑫杨慧颖邓雅楠卢静李强 . 干旱胁迫下硅对肥皂草光合特性的影响. 草业科学, doi: 

    14. [14]

      张黎明皇甫超河远勇帅孟盈盈贾璇 . 升金湖消落带植被特征及与土壤特性的关系. 草业科学, doi: 

    15. [15]

      肖翔格日才旦侯扶江 . 青藏高原放牧和地形对高寒草甸群落α多样性和土壤物理性质的影响. 草业科学, doi: 

    16. [16]

      马祥贾志锋刘文辉刘勇魏小星牛奎举 . 青海地区燕麦“3414”施肥效果及推荐施肥量. 草业科学, doi: 

    17. [17]

      吴亚张卫红陈鸣晖刘大林 . 不同品种燕麦在扬州地区的生产性能. 草业科学, doi: 

    18. [18]

      刘宁宁许庆方郭刚陈雷梁琪包江志焦琨明郝智会 . 应用CNCPS体系评价早熟、晚熟燕麦品种的品质. 草业科学, doi: 

    19. [19]

      张冉杨蔚任健王文许文花田健帆刘莉马向丽 . 不同燕麦品种在迪庆高寒牧区的青贮潜力. 草业科学, doi: 

    20. [20]

      苟智强赵桂琴刘欢柴继宽曾亮许兴泽闫车太黎蓉 . 混配除草剂对燕麦田杂草的防效及燕麦产量的影响. 草业科学, doi: 

  • 凯时66

    图 1  不同土壤干旱下燕麦幼苗生长变化

    Figure 1.  Growth change in oat seedlings under different soil drought

    75% FWC:正常供水;60% FWC:轻度胁迫;45% FWC:中度胁迫;30% FWC:重度胁迫;不同小写字母表示土壤干旱处理之间差异显著(P < 0.05);下图同。

    75% FWC: normal water condition; 60% FWC: mild drought stress; 45% FWC: moderate drought stress; 30% FWC: severe drought stress; different lowercase letters indicate significant difference among drought treatments at the 0.05 level; this is applicable for the following figures as well.

    图 2  不同土壤干旱下燕麦叶绿素合成前体物质的变化

    Figure 2.  Changes in precursors of chlorophyll synthesis in oat under different soil drought

    图 3  不同土壤干旱下燕麦叶绿素含量的变化

    Figure 3.  Changes in chlorophyll content of oat under different soil drought

    图 4  不同土壤干旱下燕麦叶绿素荧光参数的变化

    Figure 4.  Changes in chlorophyll fluorescence parameters of oat under different soil drought

    图 5  不同干旱胁迫下燕麦光能分配参数的变化

    Figure 5.  Changes in light distribution parameters of oat under different soil drought

    凯时66
  • 加载中
图(5)
计量
  • PDF下载量:  13
  • 文章访问数:  98
  • HTML全文浏览量:  67
文章相关
  • 通讯作者:  刘文辉, qhliuwenhui@163.com
  • 收稿日期:  2021-06-03
  • 接受日期:  2022-01-13
  • 网络出版日期:  2022-04-07
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
凯时66