凯时66

欢迎访问 草业科学,今天是

荒漠草原植被及土壤生态化学计量对降水的响应

梁晓谦 李建平 张翼 尉剑飞 黄绪梅

引用本文: 梁晓谦,李建平,张翼,尉剑飞,黄绪梅. 荒漠草原植被及土壤生态化学计量对降水的响应. 草业科学, 2022, 39(5): 864-875 doi: shu
Citation:  LIANG X Q, LI J P, ZHANG Y, YU J F, HUANG X M. Responses of vegetation and soil ecological stoichiometry to precipitation in desert steppe. Pratacultural Science, 2022, 39(5): 864-875 doi: shu

荒漠草原植被及土壤生态化学计量对降水的响应

    作者简介: 梁晓谦(1996-),女,甘肃临夏人,在读研究生,研究方向为草地生态与模型构建。E-mail: laic5975@163.com
    通讯作者: 李建平(1982-),男,陕西延安人,副教授,硕导,博士,研究方向为草地生态与模型构建。E-mail: lijiangpingsas@163.com
  • 基金项目: 宁夏重点研发计划项目(2020BEG03046);宁夏大学草学一流学科建设项目(NXYLXK2017A01)

摘要: 利用遮雨棚技术对宁夏盐池县荒漠草原降水量进行人为调控,分析了不同降水梯度[33%、66%、100% (正常降水)、133%和166%]下植物群落地上部分和地下部分,以及土壤的生态化学计量特征,以探讨不同降水梯度对荒漠草原生态系统化学计量学特征的影响。结果表明:1)植物群落地上部分碳(C)随降水的增加逐渐减少,氮磷比(N ꞉ P)在正常降水下显著(P < 0.05)高于降水量增加的处理;植物群落地下部分C、氮(N)、磷(P)随着降水梯度增大而先减后增,且地下部分C、C ꞉ N、C ꞉ P均在66%降水处理下显著(P < 0.05)高于其他梯度。2)土壤有机碳(SOC)、全氮(TN)、全磷(TP)随降水量的增加而增加;同一增水梯度下,表层土壤的SOC、TN和TP显著(P < 0.05)高于深层土层。3)土壤SOC与植物群落地上部分P含量存在显著负相关(P < 0.05),植物群落其他部分和土壤C、N、P无显著相关(P > 0.05)。研究结果表明,降水变化可改变植物养分分配,增加土壤养分积累,但降水变化过程下荒漠草原植物与土壤间元素耦合关系整体较弱。

English

    1. [1]

      SISTLA S A, SCHIMEL J P.  Stoichiometric flexibility as a regulator of carbon and nutrient cycling in terrestrial ecosystems under change[J]. New Phytologist, 2012, 196(1): 68-78. doi:

    2. [2]

      NIKLAS K J, OWENS T, REICH P B, COBB E D.  Nitrogen /phosphorus leaf stoichiometry and the scaling of plant growth[J]. Ecology Letters, 2005, 8(6): 636-642. doi:

    3. [3]

      孙连伟, 陈静文, 邓琦.  全球变化背景下陆地植物N/P生态化学计量学研究进展[J]. 热带亚热带植物学报, 2019, 27(5): 534-540. doi:
      SUN L W, CHEN J W, DENG Q.  Research progress of terrestrial plants N/P ecological stoichiometry under global change[J]. Journal of Tropical and Subtropical Botany, 2019, 27(5): 534-540. doi:

    4. [4]

      从怀军, 成毅, 安韶山, 李第红.  黄土丘陵区不同植被恢复措施对土壤养分和微生物量C、N、P的影响[J]. 水土保持学报, 2010, 24(4): 217-221.
      CONG H J, CHENG Y, AN S S, LI D H.  Changes of soil nutrient and soil microbial biomass C, N and P in different plant rehabilitation on the Loess Hilly Area of Ningxia[J]. Journal of Soil and Water Conservation, 2010, 24(4): 217-221.

    5. [5]

      程滨, 赵永军, 张文广, 安树青.  生态化学计量学研究进展[J]. 生态学报, 2010, 30(6): 1628-1637.
      CHENG B, ZHAO Y J, ZHANG W G, AN S Q.  The research advances and prospect of ecological stoichiometry[J]. Acta Ecologica Sinica, 2010, 30(6): 1628-1637.

    6. [6]

      FEIKE A D, ELISE P, JACK A M, DANA M B, YOLIMA C, DANIEL R L, RONALD F F, DACID G W..  Climate change alters stoichiometry of phosphorus and nitrogen in a semiarid grassland[J]. New Phytologist, 2012, 196(3): 807-815. doi:

    7. [7]

      BUI E N, HENDERSON B L.  C ꞉ N ꞉ P stoichiometry in Australian soils with respect to vegetation and environmental factors[J]. Plant and Soil, 2013, 373(12): 553-568.

    8. [8]

      任书杰, 于贵瑞, 陶波, 王绍强.  中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究[J]. 环境科学, 2007, 28(12): 2665-2673. doi:
      REN S J, YU G R, TAO B, WANG S Q.  Leaf nitrogen and phosphorus stoichiometry across 654 terrestrial plant species in NSTEC[J]. Environmental Science, 2007, 28(12): 2665-2673. doi:

    9. [9]

      SARDANS J, GRAU O, CHEN H Y H, JANSSENS I A, CIAIS P, PIAO S, PENUELAS J.  Changes in nutrient concentrations of leaves and roots in response to global change factors[J]. Global Change Biology, 2017, 23(9): 3849-3856. doi:

    10. [10]

      任国玉, 任玉玉, 战云健, 孙秀宝, 柳艳菊, 陈峪, 王涛.  中国大陆降水时空变异规律: Ⅱ. 现代变化趋势[J]. 水科学进展, 2015, 26(4): 451-465.

    11. [11]

      王旭洋, 李玉霖, 连杰, 段育龙, 王立龙.  半干旱典型风沙区植被覆盖度演变与气候变化的关系及其对生态建设的意义[J]. 中国沙漠, 2021, 41(1): 183-194.
      WANG X Y, LI Y L, LIAN J, DUAN Y L, WANG L L.  Relationship between vegetation coverage and climate change in semiarid sandy land and the significance to ecological construction[J]. Journal of Desert Research, 2021, 41(1): 183-194.

    12. [12]

      SAMUEL B.  Water supply changes N and P conservation in a perennial grass Leymus chinensis[J]. Journal of Integrative Plant Biology, 2009, 51(11): 1050-1056. doi:

    13. [13]

      黄小燕, 李耀辉, 冯建英, 王劲松, 王芝兰, 王圣杰, 张宇.  中国西北地区降水量及极端干旱气候变化特征[J]. 生态学报, 2015, 35(5): 1359-1370.
      HUANG X Y, LI Y H, FENG J Y, WANG J S, WANG Z L, WANG S J, ZHANG Y.  Climate characteristics of precipitation and extreme drought events in northwest China[J]. Acta Ecologica Sinica, 2015, 35(5): 1359-1370.

    14. [14]

      ZHENG S X, SHANGGUAN Z P.  Spatial patterns of leaf nutrient traits of the plants in the Loess Plateau of China[J]. Trees, 2007, 21(3): 357-370. doi:

    15. [15]

      苏卓侠, 苏冰倩, 上官周平.  黄土高原刺槐叶片–土壤生态化学计量参数对降雨量的响应特征[J]. 生态学报, 2020, 40(19): 7000-7008.
      SU Z X, SU B Q, SHANGGUAN Z P.  Response characteristics of Robinia pseudoacacia leaf and soil ecological stoichiometric parameters to precipitation in the Loess Plateau[J]. Acta Ecologica Sinica, 2020, 40(19): 7000-7008.

    16. [16]

      郭宁, 姜基春, 王国强, 焦峰.  黄土丘陵区不同降水梯度对草地群落化学计量学特征的影响[J]. 水土保持通报, 2020, 40(2): 1-8.
      GUO N, JIANG J C, WANG G Q, JIAO F.  Effects of different precipitation gradients on stoichiometric characteristics of grassland communities in Loess Hilly Region[J]. Bulletin of Soil and Water Conservation, 2020, 40(2): 1-8.

    17. [17]

      李一春, 余海龙, 王攀, 牛玉斌, 樊瑾, 朱湾湾, 黄菊莹.  降水量对荒漠草原植物群落多样性和C ꞉ N ꞉ P生态化学计量特征的影响[J]. 中国草地学报, 2020, 42(1): 117-126.
      LI Y C, YU H L, WANG P, NIU Y B, FAN J, ZHU W W, HUANG J Y.  Effect of precipitation on plant community diversity and C ꞉ N ꞉ P ecological stoichiometry in a desert steppe of Ningxia, northwestern China[J]. Chinese Journal of Grassland, 2020, 42(1): 117-126.

    18. [18]

      王誉陶, 李建平, 井乐, 张翼, 张娟.  模拟降雨对黄土高原典型草原土壤化学计量及微生物多样性的影响[J]. 生态学报, 2020, 40(5): 1517-1531.
      WANG Y T, LI J P, JING L, ZHANG Y, ZHANG J.  Effects of different precipitation treatments on soil ecological chemistry and microbial diversity in the Loess Plateau[J]. Acta Ecologica Sinica, 2020, 40(5): 1517-1531.

    19. [19]

      宋一凡, 卢亚静, 刘铁军, 刘慧文, 闫泽宇, 王慧琪.  荒漠草原不同雨量带土壤-植物-微生物C、N、P及其化学计量特征[J]. 生态学报, 2020, 40(12): 4011-4023.
      SONG Y F, LU Y J, LIU T J, LIU H W, YAN Z Y, WANG H Q.  Soil-plant-microbial C, N, P and their stoichiometric characteristics in different rainfall zones of desert steppe[J]. Acta Ecologica Sinica, 2020, 40(12): 4011-4023.

    20. [20]

      聂明鹤, 沈艳, 陆颖, 王科鑫, 张小菊.  宁夏盐池县荒漠草原区不同群落优势植物叶片-土壤生态化学计量特征[J]. 草地学报, 2021, 29(1): 131-140.
      NIE M H, SHEN Y, LU Y, WANG K X, ZHANG X J.  Ecostoichiometric characteristics of dominant plant leaves-soil ecology in different communities of desert steppe in Yanchi County, Ningxia[J]. Acta Prataculturae Sinica, 2021, 29(1): 131-140.

    21. [21]

      贾荣, 兰登明, 郭威星, 王玉婕, 温静.  宁夏东北部典型荒漠草原植物群落与土壤养分特征[J]. 生态环境学报, 2020, 29(3): 483-488.
      JIA R, LAN D M, GUO W X, WANG Y J, WEN J.  Characteristics of plant communities and soil nutrients in desert steppe of northeastern Ningxia[J]. Ecology and Environmental Sciences, 2020, 29(3): 483-488.

    22. [22]

      张静静, 刘尊驰, 鄢创, 王云霞, 刘凯, 时新荣, 袁志友.  土壤pH值变化对3种草原类型土壤碳氮磷生态化学计量特征的影响[J]. 草业学报, 2021, 30(2): 69-81. doi:
      ZHANG J J, LIU Z C, YAN C, WANG Y X, LIU K, SHI X R, YUAN Z Y.  Effects of soil pH on soil carbon, nitrogen, and phosphorus ecological stoichiometry in three types of steppe[J]. Acta Prataculturae Sinica, 2021, 30(2): 69-81. doi:

    23. [23]

      鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2000.
      BAO S D. Soil Agrochemical Analysis (Third Edition). Beijing: China Agriculture Press, 2000.

    24. [24]

      何欣月, 王宁, 刘均阳, 李秋嘉.  黄土丘陵区植物群落多样性及生物量随土壤水分梯度变化特征[J]. 生态学杂志, 2021, 40(1): 31-40.
      HE X Y, WANG N, LIU J Y, LI Q J.  The variation of plant community diversity and biomass along a soil water gradient in loess hilly region[J]. Chinese Journal of Ecology, 2021, 40(1): 31-40.

    25. [25]

      马百兵, 孙建, 朱军涛, 罗广祥.  藏北高寒草地植物群落C、N化学计量特征及其影响因素[J]. 生态学杂志, 2018, 37(4): 1026-1036.
      MA B B, SUN J, ZHU J T, LUO G X.  Carbon and nitrogen stoichiometry of plant community and its influencing factors in a northern Tibet alpine grassland[J]. Chinese Journal of Ecology, 2018, 37(4): 1026-1036.

    26. [26]

      智颖飙, 刘珮, 马慧, 路战远, 崔艳, 孙安安, 姚一萍, 张德健, 刘海英, 红鸽, 刘钟龄, 李雪飞, 张荷亮.  中国荒漠植物生态化学计量学特征与驱动因素[J]. 内蒙古大学学报(自然科学版), 2017, 48(1): 97-105.
      ZHI Y B, LIU P, MA H, LU Z Y, CUI Y, SUN A A, YAO Y P, ZHANG D J, LIU H Y, HONG G, LIU Z L, LI X F, ZHANG H L.  The eco-stoichiometric characteristics and deiving factors of desert plant in China[J]. Journal of Inner Mongolia University (Natural Science Edition), 2017, 48(1): 97-105.

    27. [27]

      SABINE G, WILLEM K, JOS T A V.  BIiomass N ꞉ P ratios as indicators of nutrient limitation for plant populations in wetlands[J]. Ecological Applications, 2003, 13(2): 372-384. doi:

    28. [28]

      KOERSELMAN W, MEULEMAN A F M.  The vegetation N ꞉ P ratio: A new tool to detect the nature of nutrient limitation[J]. Journal of Applied Ecology, 1996, 33(6): 1441-1450. doi:

    29. [29]

      高江平, 赵锐锋, 张丽华, 王军锋, 谢忠奎.  降雨变化对荒漠草原植物群落多样性与土壤C ꞉ N ꞉ P生态化学计量特征的影响[J]. 环境科学, 2021, 42(2): 977-987.
      GAO J P, ZHAO R F, ZHANG L H, WANG J F, XIE Z K.  Effects of precipitation changes on plant community diversity and soil C ꞉ N ꞉ P ecological stoichiometric characteristics in a desert steppe of China[J]. Environmental Science, 2021, 42(2): 977-987.

    30. [30]

      李玉霖, 毛伟, 赵学勇, 张铜会.  北方典型荒漠及荒漠化地区植物叶片氮磷化学计量特征研究[J]. 环境科学, 2010, 31(8): 1716-1725.
      LI Y L, MAO W, ZHAO X Y, ZHANG T H.  Leaf nitrogen and phosphorus stoichiometry in typical desert and desertified regions, North China[J]. ENVIRONMENTAL SCIENCE, 2010, 31(8): 1716-1725.

    31. [31]

      WARDLE D A, WALKER L R, BARDGETT R D.  Ecosystem properties and forest decline in contrasting long-term chronosequences[J]. Science, 2004, 305(5683): 509-513. doi:

    32. [32]

      刘海威. 黄土丘陵区草地群落生物学及生态化学计量学特征对降水改变的响应分析评价. 杨凌: 中国科学院大学(中国科学院教育部水土保持与生态环境研究中心)硕士学位论文, 2018.
      LIU H W. Influence of precipitation change on grassland community biology and ecological stoichiometry characteristics in the Loess Hilly Region. Master Thesis. Yangling: University of Chinese Academy of Sciences (Research center of Soil and water conservation project, Chinese Academy of Sciences and Ministry of Education), 2018.

    33. [33]

      朱湾湾, 王攀, 樊瑾, 牛玉斌, 余海龙, 黄菊莹.  降水量及N添加对宁夏荒漠草原土壤C ꞉ N ꞉ P生态化学计量特征和植被群落组成的影响[J]. 草业学报, 2019, 28(9): 33-44. doi:
      ZHU W W, WANG P, FAN J, NIU Y B, YU H L, HUANG J Y.  Effects of precipitation and N addition on soil C ꞉ N ꞉ P ecological stoichiometry and plant community composition in a desert steppe of Ningxia, northwestern China[J]. Acta Prataculturae Sinica, 2019, 28(9): 33-44. doi:

    34. [34]

      洪江涛, 吴建波, 王小丹.  全球气候变化对陆地植物碳氮磷生态化学计量学特征的影响[J]. 应用生态学报, 2013, 24(9): 2658-2665.
      HONG J T, WU J B, WANG X D.  Effects of global climate change on the C, N, and P stoichiometry of terrestrial plants[J]. Chinese Journal of Applied Ecology, 2013, 24(9): 2658-2665.

    35. [35]

      黄菊莹, 余海龙, 刘吉利, 马飞, 韩磊.  控雨对荒漠草原植物、微生物和土壤C、N、P化学计量特征的影响[J]. 生态学报, 2018, 38(15): 5362-5373.
      HUANG J Y, YU H L, LIU J L, MA F, HAN L.  Effects of precipitation levels on the C ꞉ N ꞉ P stoichiometry in plants, microbes, and soils in a desert steppe in China[J]. Acta Ecologica Sinica, 2018, 38(15): 5362-5373.

    36. [36]

      李佳佳, 樊妙春, 上官周平.  黄土高原南北样带刺槐林土壤碳、氮、磷生态化学计量特征[J]. 生态学报, 2019, 39(21): 7996-8002.
      LI J J, FAN M C, SHANGGUAN Z P.  Ecological stoichiometry characteristics of soil carbon, nitrogen, and phosphorus of the Robinia pseudoacacia forest on the north-south strip of the Loess Plateau[J]. Acta Ecologica, 2019, 39(21): 7996-8002.

    37. [37]

      杨阳. 宁夏荒漠草原区不同植物群落多样性及化学计量特征研究. 银川: 宁夏大学硕士学位论文, 2015.
       YANG Y. Ecological stoichiometry and plant community diversity of different plant communities in desert steppe of Ningxia. Master Thesis. Yinchuan: Ningxia University, 2015.

    38. [38]

      JI F, WEN Z M, AN S S. Changes in soil properties across a chronosequence of vegetation restoration on the Loess Plateau of China. Catena, 2011, 86(2): 110-116.

    39. [39]

      王绍强, 于贵瑞.  生态系统碳氮磷元素的生态化学计量学特征[J]. 生态学报, 2008, 28(8): 3937-3947. doi:
      WANG S Q, YU G R.  Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements[J]. Acta Ecologica Sinica, 2008, 28(8): 3937-3947. doi:

    40. [40]

      吴旭东, 季波, 何建龙, 任小玢, 俞鸿千, 王占军.  控制降水梯度对荒漠草原优势植物叶功能性状及土壤养分的影响[J]. 生态学报, 2021, 41(7): 2719-2727.
      WU X D, JI B, HE J L, REN X B, YU H Q, WANG Z J.  The effects of precipitation gradient control on the leaf functional traits and soil nutrients of the dominant plants in a desert steppe[J]. Acta Ecologica Sinica, 2021, 41(7): 2719-2727.

    41. [41]

      TIAN H Q, CHEN G S, ZHANG C, MELILLO J M, HALL C A S.  Pattern and variation of C ꞉ N ꞉ P ratios in China's soils: A synthesis of observational data[J]. Biogeochemistry, 2010, 98(1/3): 139-151.

    42. [42]

      宋一凡. 荒漠草原降水驱动下的水分–土壤–植被耦合与响应机制. 北京: 中国水利水电科学研究院博士学位论文, 2019.
      SONG Y F. Coupling and response mechanism of hydrology–soil–vegetation on precipitation pulses in desert steppe. PhD Thesis. Beijing: China Institute of Water Resources & Hydropower Research(IWHR), 2019.

    43. [43]

      张晓琳, 翟鹏辉, 黄建辉.  水分和氮素添加对内蒙古半干旱温带生态系统蒸发散的影响[J]. 山西农业大学学报(自然科学版), 2020, 40(5): 24-30.
      ZHANG X L, ZHAI P H, HUANG J H.  Effects of water and nitrogen addition on ecosystem evapotranspiration in semi-arid temperate grassland of Inner Mongolia[J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2020, 40(5): 24-30.

    44. [44]

      谭海霞, 金照光, 孙富强, 耿世刚.  滦河口湿地植物–土壤生态化学计量相关性研究[J]. 水土保持研究, 2019, 26(2): 68-73.
      TAN H X, JIN Z G, SUN F Q, GENG S G.  Correlation between the stoichiometric characteristics of plants and soil in Luanhe Estuary Wetland[J]. Research of Soil and Water Conservatin, 2019, 26(2): 68-73.

    45. [45]

      丁小慧, 罗淑政, 刘金巍, 李魁, 刘国华.  呼伦贝尔草地植物群落与土壤化学计量学特征沿经度梯度变化[J]. 生态学报, 2012, 32(11): 3467-3476. doi:
      DING X H, LUO S Z, LIU J W, LI K, LIU G H.  Longitude gradient changes on plant community and soil stoichiometry characteristics of grassland in Hulunbeir[J]. Acta Ecologica Sinica, 2012, 32(11): 3467-3476. doi:

    46. [46]

      李婷, 邓强, 袁志友, 焦峰.  黄土高原纬度梯度上的植物与土壤碳、氮、磷化学计量学特征[J]. 环境科学, 2015, 36(8): 2988-2996.
      LI T, DENG Q, YUAN Z Y, JIAO F.  Latitudinal Changes in Plant Stoichiometric and Soil C, N, P Stoichiometry in Loess Plateau[J]. Environmental Science, 2015, 36(8): 2988-2996.

    1. [1]

      唐高溶郑伟王祥朱亚琼 . 旅游对喀纳斯景区植被和土壤碳、氮、磷化学计量特征的影响. 草业科学, 2016, 10(8): 1476-1485. doi: 

    2. [2]

      贾美清黄静孟元韩国栋金宝花张国刚 . 增温和增氮对荒漠草原土壤可培养真菌群落结构和多样性的影响. 草业科学, 2017, 11(7): 1397-1407. doi: 

    3. [3]

      胡向敏侯向阳陈海军丁勇运向军武自念 . 不同放牧制度下短花针茅荒漠草原土壤碳储量动态. 草业科学, 2014, 8(12): 2205-2211. doi: 

    4. [4]

      康宝天侯扶江SamanBOWATTE . 祁连山高寒草甸和荒漠草原土壤细菌群落的结构特征. 草业科学, 2020, 37(1): 10-19. doi: 

    5. [5]

      吴宛萍马红彬陆琪周瑶宿婷婷朱琳 . 补播对宁夏荒漠草原植物群落及土壤理化性状的影响. 草业科学, 2020, 37(10): 1959-1969. doi: 

    6. [6]

      刘天源周天财孙建王毅叶冲冲 . 青藏高原东缘沙化草甸植物氮磷的分配和耦合特征. 草业科学, 2021, 38(2): 209-220. doi: 

    7. [7]

      马子元钱志豪马红彬伏兵哲彭文栋刘定鑫 . 宁夏荒漠草原5种乡土植物适应性评价. 草业科学, 2022, 39(5): 1006-1014. doi: 

    8. [8]

      张宇黄琛赵萌莉 . 取样尺度对荒漠草原土壤水分空间异质性的影响. 草业科学, 2013, 7(11): 1698-1703.

    9. [9]

      刘娜白可喻杨云卉张睿洋张睿洋韩国栋韩国栋 . 放牧对内蒙古荒漠草原草地植被及土壤养分的影响. 草业科学, 2018, 12(6): 1323-1331. doi: 

    10. [10]

      郭天斗赵亚楠周玉蓉王红梅 . 宁夏东部荒漠草原灌丛引入过程中土壤呼吸响应特征. 草业科学, 2019, 36(12): 3052-3064. doi: 

    11. [11]

      秦建蓉马红彬王丽虎巧能沈艳许冬梅 . 宁夏荒漠草原植物群落特征对不同轮牧开始时间的响应. 草业科学, 2016, 10(5): 963-971. doi: 

    12. [12]

      李楠崔耀平张帅帅刘素洁付一鸣 . 1990–2015年中国草原和荒漠草原的时空变化及其对温室气体的封存潜力. 草业科学, 2019, 36(2): 324-334. doi: 

    13. [13]

      魏 乐宋乃平方 楷 . 宁夏荒漠草原植物群落的空间异质性. 草业科学, 2014, 8(5): 826-832. doi: 

    14. [14]

      李江文韩国栋李治国王忠武康萨如拉任海燕于丰源 . 无芒隐子草地上部分功能性状对长期放牧的变异性响应. 草业科学, 2018, 12(5): 1179-1187. doi: 

    15. [15]

      李治国吕世杰闫宝龙韩国栋王忠武屈志强王静 . 放牧强度对短花针茅植物种群空间分布的影响. 草业科学, 2021, 38(6): 1060-1068. doi: 

    16. [16]

      朱凡刘任涛贺达汉 . 模拟增雨条件下沙质草地地表植被和节肢动物群落变化特征. 草业科学, 2014, 8(12): 2333-2341. doi: 

    17. [17]

      张超高晶赵艳丽 . 基于GIS内蒙古荒漠草原气候变化分析. 草业科学, 2014, 8(12): 2212-2220. doi: 

    18. [18]

      苏莹陈林李月飞杨新国王磊宋乃平朱林 . 宁夏荒漠草原区猪毛蒿的动态生命表及生存分析. 草业科学, 2019, 36(6): 1563-1577. doi: 

    19. [19]

      刘佳楠赵娟常海涛张安宁陈蔚刘任涛 . 基于网孔分解袋法的荒漠草原柠条枯落物分解过程中的养分变化. 草业科学, 2019, 36(6): 1624-1633. doi: 

    20. [20]

      黄琛张宇赵萌莉韩国栋 . 放牧强度对荒漠草原植被特征的影响. 草业科学, 2013, 7(11): 1814-1818.

  • 凯时66

    图 1  小区降水收集及水分控制设计

    Figure 1.   Design of water collection and water control

    图 2  不同降水梯度植物群落地上及地下C、N、P含量

    Figure 2.  The aboveground and underground C, N, and P contents of plant groups under different precipitation gradients

    P1:正常降水的33%;P2:正常降水的66%;P3:正常降水;P4:正常降水的133%;P5:正常降水的166%;下同。不同小写字母表示植物群落同一部分不同降水梯度间差异显著(P < 0.05)。

    P1: 33% of normal precipitation; P2: 66% of normal precipitation; P3: normal precipitation; P4: 133% of normal precipitation; P5: 166% of normal precipitation; this is applicable for the following tables and figures as well. Different lowercase letters indicate significant differences among different precipitation gradients in the same part of the plant community at the 0.05 level.

    图 3  各降水梯度下不同土层的土壤碳氮磷含量及其计量比

    Figure 3.  Contents and ratios of soil carbon, nitrogen, and phosphorus in different soil layers under each precipitation gradient

    不同小写字母表示同一降水处理下不同土层间差异显著(P < 0.05)。

    Different lowercase letters indicate a significant difference between different soil layers under the same precipitaiton gradient at the 0.05 level.

    图 4  各土层在不同降水处理下的土壤碳氮磷含量及其计量比

    Figure 4.  The content and ratio of soil carbon, nitrogen, and phosphorus under different precipitation gradients in each soil layer

    不同小写字母表示同一土层不同降水梯度间差异显著(P < 0.05)。

    Different lowercase letters indicate significant differences between different rainfall treatments in the same soil layer at the 0.05 level.

    图 5  不同降水梯度下植物−土壤化学计量比相关性热图

    Figure 5.   Heat map of plant-soil stoichiometric ratio correlation under different precipitaion gradients.

      PA:植物地上部分;PU:植物地下部分;S:土壤;C:碳;N:氮;P:磷;SOC:有机碳;TN:全氮;TP:全磷。*和**分别表示在0.05和0.01水平上显著和极显著相关。

     PA: the aboveground part of the plant; PU: the underground part of the plant; S: soil; C: carbon; N: nitrogen; P: phosphorus; SOC: soil organic carbon; TN: total nitrogen; TP: total phosphorus. * and ** indicates a significant correlation at the 0.05 and 0.01 levels, respectively.

    表 1  不同降水梯度植物群落地上及地下C、N、P化学计量比特征

    Table 1.  Characteristics of aboveground and underground C, N, and P stoichiometric ratios of plant communities under different precipitation gradients

    植物生态化学计量比
    Plant ecological stoichiometric ratio
    降水梯度 Precipitation gradient
    P1P2P3P4P5
    C ꞉ N地上 Aboveground13.57 ± 2.05a15.32 ± 1.00a12.90 ± 0.61a12.62 ± 0.03a11.85 ± 0.40a
    地下 Underground19.52 ± 0.72b28.58 ± 0.59a19.78 ± 1.23b16.57 ± 1.53b19.31 ± 0.81b
    C ꞉ P地上 Aboveground244.78 ± 35.13a234.03 ± 32.18a264.21 ± 28.92a199.53 ± 9.58a200.30 ± 6.07a
    地下 Underground485.27 ± 45.81b661.02 ± 13.69a542.86 ± 50.73ab395.94 ± 35.83b389.76 ± 59.41b
    N ꞉ P地上 Aboveground18.07 ± 0.65a15.14 ± 1.33b20.46 ± 1.88a15.80 ± 0.71b16.91 ± 0.05b
    地下 Underground25.09 ± 3.27a23.12 ± 0.00a27.70 ± 3.37a24.71 ± 4.45a19.99 ± 2.22a
     同行不同小写字母表示不同降水梯度下差异显著(P < 0.05)。
     Different lowercase letters in the same column indicate a significant difference among precipitation treatments at the 0.05 level.
    下载: 导出CSV
    凯时66
  • 加载中
图(5)表(1)
计量
  • PDF下载量:  4
  • 文章访问数:  81
  • HTML全文浏览量:  29
文章相关
  • 通讯作者:  李建平, lijiangpingsas@163.com
  • 收稿日期:  2021-06-08
  • 网络出版日期:  2022-03-30
  • 刊出日期:  2022-05-15
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
凯时66